EXAM 3 - MATH 140 DATE: Friday, October 28 INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. Each question is worth 3 points. It is necessary to show your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Find the domain and use your basic knowledge of logarithmic graphs and your graphing techniques to sketch the graph of

$$f(x) = -\log_{1/3} \left(x - 2 \right) + 1.$$

State clearly all transformations used and label key points on your graphs.

- 2. Solve the equations
 - (a) $5^{2x} 5^{x+1} 14 = 0$
 - (b) $\log_{16} x + \log_4 x + \log_2 x = 3.$
- 3. Suppose that the point (2, -5) is on the terminal side of the angle θ . Find the trigonometric numbers of θ .
- 4. Suppose that $\tan \theta = \frac{1}{3}$ and that $\pi < \theta < \frac{3\pi}{2}$. Find each of the remaining trigonometric numbers of θ .
- 5. (a) Sketch carefully the graph of $f(x) = \sin x$ in $0 \le x \le 2\pi$.
 - (b) Use the graph of Part (a) and transformations to obtain a rough sketch of the graph of g(x) = ¹/₂ sin (x + ^π/₂) + 1.
 (You do not get credit if you do not label all relevant points carefully!)
- 6. (a) Find the amplitude, period and phase shift of the function $f(x) = 3\cos\left(-2x + \frac{\pi}{2}\right)$.
 - (b) Write an equation of a sine function with amplitude A > 0, having amplitude 2005, period 10π and phase shift $\frac{5}{7}$. (Do both (a) and (b) carefully in a structured step-by-step way.)