HOMEWORK 11 - MATH 140 DUE DATE: Wednesday, December 7 INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. One part of each homework problem will be chosen at random and graded. Each question is worth 1 point. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

- 1. For the points $(4, \frac{3\pi}{4})$ and $(-3, 4\pi)$ given in polar coordinates, plot each point **cleanly** and find other polar coordinates (r, θ) , such that, first $r > 0, -2\pi \le \theta < 0$ and, then, $r < 0, 0 \le \theta < 2\pi$.
- 2. Convert the first two to rectangular and the last three to polar coordinates:
 - (a) $(4, \frac{3\pi}{2})$ (b) $(-2, \frac{2\pi}{3})$
 - (c) (0, -2)
 - (d) (-3,3)
 - (e) $(-2, -2\sqrt{3})$
- 3. Transform into rectangular coordinates:

(a)
$$r = 2$$
 (b) $\theta = -\frac{\pi}{4}$ (c) $r \sin \theta = -2$ (d) $r = -4 \cos \theta$

4. Use the different categories of polar graphs in your book to graph the following:

(a)
$$r = 1 + \sin \theta$$
 (b) $r = 4 + 2\sin \theta$ (c) $r = 2\sin(3\theta)$ (d) $r^2 = \sin(2\theta)$

5. Plot in the plane and write in polar and in rectangular form the complex numbers

(a)
$$-1+i$$
 (b) $2+\sqrt{3}i$ (c) $3(\cos 210^\circ + i\sin 210^\circ)$ (d) $4(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2})$

6. Find zw and $\frac{z}{w}$, leaving your answers in polar form, for

$$z = 4(\cos\frac{3\pi}{8} + i\sin\frac{3\pi}{8})$$
 and $w = 2(\cos\frac{9\pi}{16} + i\sin\frac{9\pi}{16}).$

7. Write each expression in the standard form a + bi:

(a)
$$\left[\sqrt{3}(\cos 10^\circ + i\sin 10^\circ)\right]^6$$
 (b) $\left[\frac{1}{2}(\cos 72^\circ + i\sin 72^\circ)\right]^5$

- 8. Find the complex 4-th roots of $\sqrt{3} i$.
- 9. ind the following:
 - (a) **v** in the form $a\mathbf{i}+b\mathbf{j}$, where **v** has initial point P = (-3, 2) and terminal point Q = (6, 5). Make also a graph of the situation.
 - (b) $||\mathbf{v}||$ if $\mathbf{v} = -5\mathbf{i} + 12\mathbf{j}$
 - (c) $3\mathbf{v} 2\mathbf{w}$, where $\mathbf{v} = 3\mathbf{i} 5\mathbf{j}$ and $\mathbf{w} = -2\mathbf{i} + 3\mathbf{j}$
 - (d) the unit vector having the same direction as $\mathbf{v} = 2\mathbf{i} \mathbf{j}$
- 10. Write the vector \mathbf{v} in the form $a\mathbf{i} + b\mathbf{j}$, if $||\mathbf{v}|| = 8$ and the angle α that it makes with the positive x-axis is $\alpha = 45^{\circ}$.