PRACTICE EXAM 7 - MATH 140 DATE: Friday, December 15 INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. Each question is worth 5 points. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

- 1. A construction manager wants to estimate the height of a tall building. From a certain distance from the base of the building a sighting is taken and the angle of elevation to the top of the building is found to be 60°. From a second point that is 20 meters further away from the building, a second sighting is taken of the top of the building and the new angle of elevation is found to be 45°. Find the height of the building. (4 points) Express your answer in a form that may contain roots but does not contain any trig functions. (1 point)
- 2. Suppose that in the triangle $\triangle ABC$ if $\alpha = 60^{\circ}, b = 5$ and c = 3.
 - (a) Find a. (2 points)
 - (b) Find β and γ . (1.5 points)
 - (c) Find the area A of the triangle $\triangle ABC$. (1.5 points)
- 3. Convert to rectangular coordinates and **clearly** sketch the graphs of the following equations in separate coordinate systems:
 - (a) r = 5. (1 point)
 - (b) $\theta = \frac{5\pi}{4}$ (1 point)
 - (c) $r \sin \theta = -2$ (1 point)
 - (d) $r = 7\cos\theta$ (2 points)
- 4. Suppose that $z = 64\sqrt{3} 64i$.
 - (a) Write z in polar form. (1 point)
 - (b) Find the first complex seventh root of z and write it in the standard form. (2 points)
 - (c) Find the remaining six complex seventh roots of z. Leave your answers in polar form. (2 points)
- 5. Suppose that P = (-5, 4), Q = (2, -1), R = (7, 9) and S = (5, 5).
 - (a) Find an algebraic vector $\vec{p} = \langle a, b \rangle$ and an algebraic vector $\vec{q} = \langle c, d \rangle$ such that $\vec{p} = \vec{PQ}$ and $\vec{q} = \vec{RS}$. (2 points)
 - (b) Find the algebraic vector $2\vec{p} 3\vec{q}$. (1 point)
 - (c) Find a point V, such that $\vec{PV} = 2\vec{p} 3\vec{q}$. (2 points)