HOMEWORK 7 - MATH 151 DUE DATE: Monday, November 19 INSTRUCTOR: George Voutsadakis

Read each problem **very carefully** before starting to solve it. Four out of the ten problems will be chosen at random and graded. Each problem graded is worth 3 points. It is necessary to show **all** your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

- 1. Use L'Hospital's rule, where appropriate, to find the limit.
 - (a) $\lim_{x\to(\pi/2)^+} \frac{\cos x}{1-\sin x}$
 - (b) $\lim_{x\to\infty} \frac{\ln\ln x}{x}$
 - (c) $\lim_{x \to -\infty} x^2 e^x$
 - (d) $\lim_{x\to\infty} (x \ln x)$
 - (e) $\lim_{x\to 0^+} (\tan 2x)^x$
- 2. Find the critical numbers of the following functions:
 - (a) $f(x) = x^{4/5}(x-4)^2$
 - (b) $f(x) = x \ln x$
 - (c) $f(x) = xe^{2x}$
- 3. Find the absolute maximum and the absolute minimum values of f on the given interval:
 - (a) $f(x) = x\sqrt{4 x^2}$ in [-1, 2]
 - (b) $f(x) = x \ln x$ in $[\frac{1}{2}, 2]$
- 4. Prove that the function $f(x) = x^{101} + x^{51} + x + 1$ has neither a local maximum nor a local minimum.
- 5. Verify that the function $f(x) = x^3 3x^2 + 2x + 5$ satisfies the three hypotheses of Rolle's Theorem on the interval [0,2]. Then find all numbers c that satisfy the conclusion of Rolle's Theorem.
- 6. Verify that the function satisfies the hypotheses of the Mean Value Theorem on the given interval. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem:
 - (a) $f(x) = x^3 + x 1$ on [0, 2]
 - (b) $f(x) = \frac{x}{x+2}$ on [1,4].
- 7. Show that the equation $1 + 2x + x^3 + 4x^5 = 0$ has exactly one real root.
- 8. If f(1) = 10 and $f'(x) \ge 2$ for $1 \le x \le 4$, how small can f(4) possibly be?
- 9. Use Theorem 5 on page 209 to prove the identity $2\sin^{-1} x = \cos^{-1} (1 2x^2), x \ge 0$.
- 10. Find the domains, the intercepts, the asymptotes, form the sign tables and then roughly sketch the graphs of the following functions:

(a) $f(x) = x^4 - 4x - 1$ (b) $f(x) = x^2 e^x$ (c) $f(x) = x \ln x$