EXAM 1: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 Find the equation of the line that is parallel to $3 x+5 y=21$ and passes through the point $(3,-4)$.

Solution:

The slope of the given line may be found by solving its equation for y : We have: $5 y=-3 x+21$, whence $y=-\frac{3}{5} x+\frac{21}{5}$. Hence $m=-\frac{3}{5}$. The unknown line has is parallel to the given one, whence its slope is also m. Since, it goes through the point $(3,-4)$, its equation is given by the point-slope form:

$$
y-(-4)=-\frac{3}{5}(x-3), \quad \text { i.e., } \quad y+4=-\frac{3}{5} x+\frac{9}{5}
$$

or $y=-\frac{3}{5} x-\frac{11}{5}$.
Problem 2 Find the equation of the line that is perpendicular to the line $y=5 x+2003$ and passes through the point $(-10,8)$.

Solution:

The slope of the given line is $m=5$. Hence, since the wanted line is perpendicular to that, its slope must be $-\frac{1}{5}$. This, together with the fact that it goes through the point $(-10,8)$, yield the equation

$$
y-8=-\frac{1}{5}(x-(-10)), \quad \text { i.e., } \quad y-8=-\frac{1}{5} x-2
$$

or $y=-\frac{1}{5} x+6$.
Problem 3 The cost C in terms of the number of items x produced is given by $C(x)=$ $3 x+120$ and the revenue by $R(x)=7 x$. Find the range of values of x for which the company will at least break even and the revenue, when the company breaks even.

Solution:

The company will at least break even when $R(x) \geq C(x)$. Thus we have $7 x \geq 3 x+120$, which gives $4 x \geq 120$, i.e., $x \geq 30$.

The revenue when the company breaks even is given by $R(30)=7 \cdot 30=210$.
Problem 4 The demand price p of an item in terms of the quantity q is given by $p=$ $-q^{2}+3600$ and the supply price p in term of the quantity q by $p=50 q$. Determine the equilibrium price and the equilibrium supply.

Solution:

To find the equilibrium quantity (both supply and demand) we set $-q^{2}+3600=50 q$, whence $q^{2}+50 q-3600=0$, i.e., $(q+90)(q-40)=0$. Therefore $q=-90$ or $q=40$. Since q denotes quantity, it cannot be negative, whence we get $q=40$. Now the equilibrium price is given by $p=50 \cdot 40=2000$.

Problem 5 Solve the inequality $|x-7|-1 \leq 20$.

Solution:

We have $|x-7|-1 \leq 20$ implies $|x-7| \leq 21$, whence $-21 \leq x-7 \leq 21$, and, therefore, $-14 \leq x \leq 28$.

Problem 6 Find the domain of $f(x)=\sqrt{\frac{-x+1}{x+2}}$.

Solution:

First $x+2 \neq 0$, whence $x \neq-2$. Since $\frac{-x+1}{x+2}$ appears underneath a square root, we must also have $\frac{-x+1}{x+2} \geq 0$. We may now set up the sign table to find $-2<x \leq 1$.

