EXAM 2: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

 $\textbf{Problem 1} \ \textit{Find the vertex, the opening direction, the x- and y-intercepts and sketch the } \\$ graph of $f(x) = \frac{1}{2}x^2 - 3x + \frac{5}{2}$.

Solution:

The vertex has x-coordinate

$$x = -\frac{b}{2a} = -\frac{-3}{2 \cdot \frac{1}{2}} = 3$$

and y-coordinate $f(1) = \frac{1}{2}3^2 - 3 \cdot 3 + \frac{5}{2} = -2$. Hence, it is the point (3, -2). The parabola opens up, since $a = \frac{1}{2} > 0$.

The y-intercept is found by setting x=0. We have then $y=\frac{5}{2}$. Thus $(0,\frac{5}{2})$ is the y-intercept. The x-intercepts are found by setting y=0 and solving $\frac{1}{2}x^2-3x+\frac{5}{2}=0$. We have $x^2-6x+5=0$, i.e., (x-5)(x-1)=0, whence x=1 or x=5. Thus, the x-intercepts are the points (1,0) and (5,0).

The graph follows

Problem 2 Find the equation of the parabola that has vertex V = (-1,3) and goes through the point (0,1).

Solution:

Since the vertex is at V = (-1, 3), we have equation

$$f(x) = a(x+1)^2 + 3.$$

But the parabola goes through (0,1), whence

$$1 = a(0+1)^2 + 3$$
, i.e., $1 = a+3$,

which yields a = -2. Thus, the equation of the parabola is

$$f(x) = -2(x+1)^2 + 3.$$

Problem 3 The supply and the demand of a specific item are modelled by $p = q^2 + q + 5$ and $p = -q^2 + 5q + 35$, respectively, where p denotes price and q number of items. Find the equilibrium price and the equilibrium supply.

Solution:

To find the equilibrium supply set the two price functions equal:

$$q^2 + q + 5 = -q^2 + 5q + 35.$$

This gives $2q^2 - 4q - 30 = 0$. By dividing by 2 both sides, we get $q^2 - 2q - 15 = 0$. This quadratic factors as (q-5)(q+3) = 0. Hence q=-3 or q=5. Since supply has to be positive, we get q=5. The equilibrium price is then $p=5^2+5+5=35$.

Problem 4 Find the vertical and the horizontal asymptotes and the x- and y-intercepts of the function $f(x) = \frac{-x+1}{x-4}$ and roughly sketch its graph.

Solution:

The vertical asymptote is x = 4. The horizontal asymptote is given by y = -1. The y-intercept is obtained by setting x = 0. We get $y = -\frac{1}{4}$. Thus, it is the point $(0, -\frac{1}{4})$. The x-intercept is found by setting y = 0. This gives x = 1. The graph follows

Problem 5 Solve the exponential equation $9^{x^2-8} = 3^{-14x}$.

Solution:

We have by transforming both sides to base 3: $(3^2)^{x^2-8} = 3^{-14x}$. Hence $2(x^2-8) = -14x$, whence $x^2-8=-7x$ and, therefore, $x^2+7x-8=0$. This factors as (x+8)(x-1)=0. Therefore, we obtain the two solutions x=-8 or x=1.

Problem 6 Solve the logarithmic equation $\log_3 x - \log_3 (x - 5) = 2$.

Solution:

We have $\log_3 x - \log_3 (x-5) = 2$ implies $\log_3 \frac{x}{x-5} = 2$, whence $\frac{x}{x-5} = 3^2$, i.e., $\frac{x}{x-5} = 9$. Multiply both sides by x-5 to get x=9(x-5). This gives x=9x-45, whence 8x=45, i.e., $x=\frac{45}{8}$. Check to see that this is an accepted solution.