EXAM 3: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 Solve the logarithmic equation $(\log x)^{3}=\log \left(x^{4}\right)$.

Solution:

We have $(\log x)^{3}=\log \left(x^{4}\right)$ implies $(\log x)^{3}=4 \log x$, whence $(\log x)^{3}-4 \log x=0$, i.e., $\log x\left((\log x)^{2}-4\right)=0$. Therefore $\log x(\log x-2)(\log x+2)=0$. This yields $\log x=0$ or $\log x=2$ or $\log x=-2$. Thus $x=10^{0}$ or $x=10^{2}$ or $x=10^{-2}$, i.e., the solutions are $x=1$ $x=100$ or $x=\frac{1}{100}$.

Problem 2 Brian deposits $\$ 1,000$ at the end of each quarterly period for 2 years in an account paying 8% compounded quarterly. After this period, he leaves the money alone with no further deposits for an additional 3 years. Find the final amount in the account at the end of the entire 5 year period.

Solution:

For the first 2 years Brian has set up an ordinary annuity paying 8% quarterly, whence its future amount after the 2 year period will be $A_{2}=R \frac{(1+i)^{n}-1}{i}=1000 \frac{(1+0.02)^{8}-1}{0.02}=$ $1000 \frac{1.02^{8}-1}{0.02}$. Then the amount A_{2} is left to accumulate compound interest under the same terms for another 3 years. Thus the future amount after the entire 5 year period is

$$
A=A_{2}(1+0.02)^{12}=1000 \frac{1.02^{8}-1}{0.02} 1.02^{12}
$$

Problem 3 Solve the following system by substitution $\left\{\begin{aligned} 2 x-5 y=16 \\ 7 x-3 y=27\end{aligned}\right\}$

Solution:

The first equation gives $x=\frac{5}{2} y+8$. Substitute into the second equation to get $7\left(\frac{5}{2} y+\right.$ $8)-3 y=27$, whence $\frac{35}{2} y+56-3 y=27$. Hence $\frac{29}{2} y=-29$. Thus yields $y=-2$. Now substituting this value into the first equation we get back $x=\frac{5}{2}(-2)+8=3$. Thus, the given system has the unique solution $(x, y)=(3,-2)$.

Problem 4 Solve the following system by the Gauss-Jordan method

$$
\left\{\begin{array}{r}
x-y+z=r \\
-2 x+y-z= \\
-x-2 y+z=
\end{array}\right\}
$$

Solution:

We have

$$
\left[\begin{array}{rrr|r}
1 & -1 & 1 & -4 \\
-2 & 1 & -1 & 5 \\
-1 & -2 & 1 & -3
\end{array}\right] \longrightarrow\left[\begin{array}{lll|r}
1 & -1 & 1 & -4 \\
0 & -1 & 1 & -3 \\
0 & -3 & 2 & -7
\end{array}\right] \longrightarrow\left[\begin{array}{rrr|r}
1 & -1 & 1 & -4 \\
0 & 1 & -1 & 3 \\
0 & -3 & 2 & -7
\end{array}\right] \longrightarrow
$$

$$
\left[\begin{array}{rrr|r}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 3 \\
0 & 0 & -1 & 2
\end{array}\right] \longrightarrow\left[\begin{array}{rrr|r}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 3 \\
0 & 0 & 1 & -2
\end{array}\right] \longrightarrow\left[\begin{array}{lll|r}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -2
\end{array}\right]
$$

Thus, the given system has the unique solution $(x, y, z)=(-1,1,-2)$.
Problem 5 Pretzels cost $\$ 3$ per pound, dried fruit $\$ 4$ per pound and nuts $\$ 8$ per pound. How many pounds of each should be used to produce 140 pounds of trail mix costing $\$ 6$ per pound in which there are twice as many pretzels (by weight) as dried fruit?

Solution:

Let x, y and z be the quantities in pounds of pretzels, dried fruit and nuts, respectively, that have to be mixed to produce the 140 pounds of the trail mix. Then we have

$$
\left\{\begin{array}{rlr}
x+y+z & =140 \\
3 x+4 y+8 z & =840 \\
x-2 y & =0
\end{array}\right\}
$$

The third equation gives $x=2 y$. Thus, the first and the second become $3 y+z=140$ and $10 y+8 z=840$, respectively. The first of these gives $z=140-3 y$. The second yields $5 y+4 z=420$, whence $5 y+4(140-3 y)=420$, i.e., $5 y+560-12 y=420$. Thus $7 y=140$ or $y=20$. Thus $x=40$ and $z=80$. We need to mix 40 pounds of pretzels, 20 pounds of dried fruit and 80 pounds of nuts.

Problem 6 Solve the matrix equation $2 A+X=3 B$, where $A=\left[\begin{array}{rr}-1 & 3 \\ 5 & -2\end{array}\right]$ and $B=$ $\left[\begin{array}{rr}2 & 1 \\ 0 & -3\end{array}\right]$.

Solution:

From $2 A+X=3 B$ we obtain
$X=3 B-2 A=3\left[\begin{array}{rr}2 & 1 \\ 0 & -3\end{array}\right]-2\left[\begin{array}{rr}-1 & 3 \\ 5 & -2\end{array}\right]=\left[\begin{array}{rr}6 & 3 \\ 0 & -9\end{array}\right]-\left[\begin{array}{rr}-2 & 6 \\ 10 & -4\end{array}\right]=\left[\begin{array}{rr}8 & -3 \\ -10 & -5\end{array}\right]$.

