FINAL EXAM: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 Find the equation of the line that goes through the point $(-5,2)$ and is perpendicular to the line going through $(1,2)$ and $(4,3)$.

Solution:

The line that goes through the points $(1,2)$ and 4,3$)$ has slope $m=\frac{3-2}{4-1}=\frac{1}{3}$. Hence the line we are seeking has slope -3 and goes through the point $(-5,2)$. Therefore, its equation is given by the point-slope form $y-2=-3(x+5)$ or $y=-3 x-13$.

Problem 2 Find the domain of the function $f(x)=\frac{1}{\sqrt{x^{2}-2 x-8}}$.

Solution:

We need to solve the inequality $x^{2}-2 x-8>0$. We have $(x-4)(x+2)>0$, whence, the sign table gives $x<-2$ or $x>4$. Thus $D(f)=\{x: x<-2$ or $x>4\}$.

Problem 3 A shopping center has a rectangular area of 40,000 square yards enclosed on three sides for a parking lot. The length is 200 yards more than twice the width. Find the length and width of the lot.

Solution:

Let l, w denote the length and the width, respectively, of the parking lot. Then we have $l w=40000$ and $l=2 w+200$. Therefore, we have, by substitution, $(2 w+200) w=40000$, whence $2 w^{2}+200 w-40000=0$, i.e., $w^{2}+100 w-20000=0$. This gives $(w+200)(w-100)=0$, and, hence, $w=-200$ or $w=100$. Since the dimensions cannot be negative, we have $w=100$ and, as a consequence, $l=400$.

Problem 4 Find the vertex, the opening direction, the x - and y-intercepts and sketch the graph of $f(x)=4 x^{2}-12 x-7$.

Solution:

For the x-coordinate of the vertex, we compute $x=-\frac{b}{2 a}=-\frac{-12}{8}=\frac{3}{2}$. the y-coordinate is, therefore $y=f\left(\frac{3}{2}\right)=4 \frac{9}{4}-12 \frac{3}{2}-7=-16$. Thus the vertex is the point $V=\left(\frac{3}{2},-16\right)$. The parabola opens up since $a=4>0$. For the x-intercepts, we use the quadratic formula:

$$
x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{12 \pm \sqrt{144-4 \cdot 4 \cdot(-7)}}{2 \cdot 4}=\frac{12 \pm 16}{8}=\frac{7}{2},-\frac{1}{2}
$$

Thus $\left(-\frac{1}{2}, 0\right)$ and $\left(\frac{7}{2}, 0\right)$ are the x-intercepts. The y-intercept is the point $(0,-7)$.
Problem 5 Solve the equations

1. $e^{3 x-1}=12$.
2. $2 \ln (y+1)=\ln \left(y^{2}-1\right)+\ln 5$.

Solution:

1. We have $e^{3 x-1}=12$ implies $3 x-1=\ln 12$, whence $3 x=\ln 12+1$ or $x=\frac{1}{3}(\ln 12+1)$.
2. $2 \ln (y+1)=\ln \left(y^{2}-1\right)+\ln 5$ implies that $\ln (y+1)^{2}-\ln \left(y^{2}-1\right)=\ln 5$, whence $\ln \frac{(y+1)^{2}}{y^{2}-1}=\ln 5$. Therefore $\ln \frac{(y+1)^{2}}{(y-1)(y+1)}=\ln 5$. Hence $\ln \frac{y+1}{y-1}=\ln 5$. This yields $\frac{y+1}{y-1}=$ e^{5}, whence $y+1=e^{5}(y-1)$, i.e., $y+1=e^{5} y-e^{5}$ or $e^{5} y-y=e^{5}+1$. Thus $y\left(e^{5}-1\right)=e^{5}+1$, which gives the solution $y=\frac{e^{5}+1}{e^{5}-1}$.

Problem 6 Solve the following system by the Gauss-Jordan method

$$
\left\{\begin{array}{rrr}
x+y-z & =6 \\
2 x-y+z & =-9 \\
x-2 y+3 z & =1
\end{array}\right\} .
$$

Solution:

$$
\begin{gathered}
{\left[\begin{array}{rrr|r}
1 & 1 & -1 & 6 \\
2 & -1 & 1 & -9 \\
1 & -2 & 3 & 1
\end{array}\right] \longrightarrow\left[\begin{array}{rrr|r}
1 & 1 & -1 & 6 \\
0 & -3 & 3 & -21 \\
0 & -3 & 4 & -5
\end{array}\right] \longrightarrow\left[\begin{array}{rrr|r}
1 & 1 & -1 & 6 \\
0 & 1 & -1 & 7 \\
0 & -3 & 4 & -5
\end{array}\right] \longrightarrow} \\
\\
\end{gathered}\left[\begin{array}{rrrr|r}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 7 \\
0 & 0 & 1 & 16
\end{array}\right] \longrightarrow\left[\begin{array}{lll|r}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 23 \\
0 & 0 & 1 & 16
\end{array}\right] .
$$

Thus $(x, y, z)=(-1,23,16)$.

Problem 7 On a typical January day in Manhattan the probability of snow is 0.10 , the probability of a traffic jam is 0.80 and the probability of snow or of a traffic jam is 0.82. Are these two events independent?

Solution:

Let S be the event of snowing and J the event of a traffic jam. Then $P(S \cap J)=$ $P(S)+P(J)-P(S \cup J)=0.10+0.80-0.82=0.08$. Hence we have $P(S) P(J)=0.10 \cdot 0.80=$ $0.08=P(S \cap J)$. Hence the two events are independent.

Problem 8 During the Iraq war 40% of the population of a certain American city were following the news on CNN, 25% on Fox and the remaining 35% on Public television. Of the CNN viewers 60% were opposed to the war without a second UN resolution, whereas the corresponding percentages for Fox and Public TV were 20\% and 75\%, respectively. If a viewer in that city is selected at random and is found to support the war without a second UN resolution, what is the probability that he/she followed the news on CNN?

Solution:

Let C, F, B be the events corresponding to CNN, Fox and Public TV, respectively, while N the event of a viewer being opposed to the war. Then, by Bayes's formula, we have

$$
\begin{aligned}
P\left(C \mid N^{\prime}\right) & =\frac{P\left(N^{\prime} \mid C\right) P(C)}{P\left(N^{\prime} \mid C\right) P(C)+P\left(N^{\prime} \mid F\right) P(F)+P\left(N^{\prime} \mid B\right) P(B)} \\
& =\frac{0.4 \cdot 0.4}{0.4 \cdot 0.4+0.8 \cdot 0.25+0.25 \cdot 0.35}
\end{aligned}
$$

Problem 9 A car dealer has 8 red, 11 gray and 9 blue cars in stock. Ten cars are randomly chosen to be displayed in front of the dealership. Find the probability that

1. 4 are red and the others are blue.
2. at most one is gray and none are blue.

Solution:

1. $P=\frac{\binom{8}{4}\binom{9}{6}}{\binom{28}{10}}$.
2. $P=0$.

Problem 10 The probability that a certain machine turns out a defective item is 0.05. What is the probability that in a run of 75 items

1. exactly 5 defectives are produced.
2. at least 2 defectives are produced.

Solution:

1. $P(5 D)=\binom{75}{5} 0.05^{5} 0.95^{70}$.
2.

$$
\begin{aligned}
P(\geq 2 D) & =1-P(\leq 1 D) \\
& =1-P(0 D)-P(1 D) \\
& =1-\binom{75}{0} 0.05^{0} 0.95^{75}-\binom{75}{1} 0.05^{1} 0.95^{74} \\
& =1-0.05^{75}-75 \cdot 0.05 \cdot 0.95^{74}
\end{aligned}
$$

