HOMEWORK 2: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 Find the point of intersection of $y=3 x+2$ and $y=-5 x+18$.

Solution:

Since at the point of intersection the two lines will have equal y-values, we get $3 x+2=$ $-5 x+18$, whence $8 x=16$, and, therefore, $x=2$. Plugging back into either $y=3 x+2$ or $y=-5 x+18$, we get $y=8$. Thus the point of intersection is $(2,8)$.

Problem 2 The sales of a company are approximated by a linear equation. If the sales were $\$ 100,000$ in 1990 and $\$ 400,000$ in 1993, find the amount of sales in 1995.

Solution:

The line that approximates the sales passes through the points $(1990,100000)$ and (1993, 400000). Thus its slope m is given by

$$
m=\frac{400000-100000}{1993-1990}=\frac{300000}{3}=100000 .
$$

Its equation is therefore given by the point-slope form

$$
y-100000=100000(x-1990) .
$$

Now, plug in 1995 for the year x to obtain

$$
y=100000(1995-1990)+100000=500000+100000=600000
$$

Problem 3 Find the solutions of $(x+5)(2 x-7)=0$.

Solution:

$(x+5)(2 x-7)=0$ implies $x+5=0$ or $2 x-7=0$ and, thus $x=-5$ or $x=\frac{7}{2}$.
Problem 4 Find the solutions of $x^{2}=16$.

Solution:

We have, by the square-root property $x=-\sqrt{16}$ or $x=\sqrt{16}$. Therefore $x=-4$ or $x=4$.

Problem 5 Find the solutions of $x^{2}-6 x-16=0$.

Solution:

We have $x^{2}-6 x-16=0$ implies $(x-8)(x+2)=0$, whence $x-8=0$ or $x+2=0$, and, therefore $x=8$ or $x=-2$.

Problem 6 Solve the linear inequality $5 x-3 \leq 12$.

Solution:

We have $5 x-3 \leq 12$ implies $5 x \leq 15$, whence $x \leq 3$.
Problem 7 Solve the inequality $x+3(x-2)>7(2+3 x)-11 x$.

Solution:

$x+3(x-2)>7(2+3 x)-11 x$ gives $x+3 x-6>14+21 x-11 x$, whence $4 x-6>14+10 x$, i.e., $-20>6 x$, and, therefore, $-\frac{20}{6}>x$, i.e., $x<-\frac{10}{3}$.

Problem 8 Solve the absolute value inequality $\left|x-\frac{2}{5}\right|-1 \leq 2$.

Solution:

$\left|x-\frac{2}{5}\right|-1 \leq 2$ gives $\left|x-\frac{2}{5}\right| \leq 3$, whence

$$
-3 \leq x-\frac{2}{5} \leq 3 \Rightarrow-3+\frac{2}{5} \leq x \leq 3+\frac{2}{5},
$$

and, therefore $-\frac{13}{5} \leq x \leq \frac{17}{5}$.

