HOMEWORK 3: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 The Revenue R in terms of the number of items produced is given by $R(x)=$ $10 x$ and the cost C by $C(x)=5 x+65$. Find the break-even point and the break-even revenue.

Solution:

At the break-even point we have $R(x)=C(x)$. Hence $10 x=5 x+65$, which yields $5 x=65$, and therefore $x=13$. The break-even revenue is thus $R(13)=10 \cdot 13=130$.

Problem 2 The supply S and the demand D in terms of the number of items q are given by $S(q)=\frac{1}{3} q+4$ and $D(q)=-q+24$, respectively. Find the equilibrium demand and the equilibrium price.

Solution:

At the equilibrium point $S(q)=D(q)$. Thus, $\frac{1}{3} q+4=-q+24$, whence $\frac{4}{3} q=20$, which yields $q=15$. The equilibrium price is $D(15)=S(15)=-15+24=9$.

Problem 3 Find the number of solutions of $3 x^{2}-6 x+2=0$.

Solution:

For the number of solutions of a quadratic one only has to compute the discriminant $D=b^{2}-4 a c$ and check its sign. If $D>0$, then the quadratic has two different solutions. If $D=0$, then the quadratic has one double root and if $D<0$, then the quadratic does not have any real roots. In the present case we have $D=b^{2}-4 a c=(-6)^{2}-4 \cdot 3 \cdot 2=36-24=$ $12>0$. Hence the quadratic has two different real roots.

Problem 4 Use the quadratic formula to solve $10 x^{2}+x-2=0$.

Solution:

Compute the discriminant $D=b^{2}-4 a c=1^{2}-4 \cdot 10 \cdot(-2)=1+80=81$. Hence $x_{1,2}=\frac{-b \pm \sqrt{D}}{2 a}=\frac{-1 \pm \sqrt{81}}{2 \cdot 10}=\frac{-1 \pm 9}{20}$, whence $x_{1}=\frac{2}{5}$ and $x_{2}=-\frac{1}{2}$.

Problem 5 Solve the inequality $x^{2}-8 x+15 \geq 3$.

Solution:

First subtract 3 from both sides to obtain $x^{2}-8 x+12 \geq 0$. The left hand side now factors as $(x-2)(x-8) \geq 0$. Therefore, by building the sign table one discovers that $x \leq 2$ or $x \geq 6$ give the solutions for this inequality.

Problem 6 Solve the inequality $\frac{x+5}{x-7} \leq 0$.

Solution:

This inequality is also solved by constructing the sign table for the fraction $\frac{x+5}{x-7}$. One then sees that the fraction becomes ≤ 0 when $-5 \leq x<7$.

Problem 7 Find the domain of $f(x)=|2 x-7|$.

Solution:

Since no denominators or square roots appear in the expression defining $f(x)$ the domain of f is the set $D(f)=\mathbb{R}=(-\infty,+\infty)$ of all real numbers.

Problem 8 Find the domain of $g(x)=\sqrt{\frac{x^{2}-4 x+4}{x^{2}+2 x-3}}$.

Solution:

The two restrictions that x should obey are, first, that $x^{2}+2 x-3 \neq 0$ and, second, that $\frac{x^{2}-4 x+4}{x^{2}+2 x-3} \geq 0$. To find the x 's that obey both we may set up the sign table for the fraction $\frac{x^{2}-4 x+4}{x^{2}+2 x-3}=\frac{(x-2)^{2}}{(x+3)(x-1)}$. The sign table, if built correctly, would give us $x<-3$ or $x>1$ as the range of values that satisfy both restrictions simultaneously. Hence $D(g)=\{x: x<$ -3 or $x>1\}$.

