HOMEWORK 4: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 Find the domain of the function $f(x)=\sqrt{\frac{x-3}{x^{2}+2 x-3}}$.

Solution:

We need to ensure that $x^{2}+2 x-3 \neq 0$ and that $\frac{x-3}{x^{2}+2 x-3} \geq 0$. The first one gives $(x+3)(x-1) \neq 0$, whence we must have $x \neq-3$ and $x \neq 1$. The second one gives $\frac{x-3}{(x+3)(x-1)} \geq 0$. we may now construct the sign table for the fraction $\frac{x-3}{(x+3)(x-1)}$ and this will give us that $\frac{x-3}{x^{2}+2 x-3} \geq 0$ if $-3<x<1$ or $x \geq 3$. Hence $D(f)=\{x:-3<x<1$ or $x \geq 3\}$.

Problem 2 Graph the piece-wise linear function

$$
f(x)= \begin{cases}2 x+1, & \text { if } x \leq 2 \\ -x+3, & \text { if } x>2\end{cases}
$$

Solution:

we graph $2 x-1$ and keep the part of its graph for $x \leq 2$ and on the same system of coordinates then graph $-x+3$ and keep the part with $x>2$. The graph would have been shown below:

Problem 3 Consider the function $g(x)=-x^{2}+7 x-10$. Its graph is a parabola. Find its vertex and x-intercepts, state whether it opens up or down and make a rough sketch of it.

Solution:

The vertex is $V=\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)=\left(-\frac{7}{2(-1)}, f\left(\frac{7}{2}\right)\right)=\left(\frac{7}{2}, \frac{9}{4}\right)$. For the x-intercepts, we set $y=0$ and find $-x^{2}+7 x-10=0$, whence $x^{2}-7 x+10=0$, i.e., $(x-5)(x-2)=0$ and we have $x=2$ or $x=5$. the graph opens down since $a=-1<0$. The sketch would have appeared here:

Problem 4 Consider the function $g(x)=x^{2}+4 x$. Its graph is a parabola. Find its vertex and x-intercepts, state whether it opens up or down and make a rough sketch of it.

Solution:

The vertex is $V=\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)=\left(-\frac{4}{2 \cdot 1}, f\left(-\frac{4}{2}\right)\right)=(-2,-4)$. For the x-intercepts, we set $y=0$ and find $x^{2}+4 x=0$, whence $x(x+4)$, i.e., $x=-4$ or $x=0$. the graph opens up since $a=1>0$. The sketch would have appeared here:

Problem 5 Find the equation of the function whose graph is a parabola with vertex $V=$ $(2,3)$ passing through $(-1,-1)$.

Solution:

In the form $f(x)=a(x-h)^{2}+k$ we have that the vertex is located at $(h, k)=(2,3)$. Whence the equation is $f(x)=a(x-2)^{2}+3$. But the parabola also goes through the point $(-1,-1)$, whence we must have

$$
-1=a(-1-2)^{2}+3, \text { i.e., }-1=a(-3)^{2}+3
$$

which yields $9 a+3=-1$, and therefore $a=-\frac{4}{9}$. Hence the equation is $f(x)=-\frac{4}{9}(x-2)^{2}+3$.

Problem 6 When the price of a bizz is $p(x)=100-2 x$, then x bizz are sold. Find an expression for the revenue $R(x)$ in terms of the number x of bizz. Find the number of bizz that have to be sold to maximize the revenue and the maximum revenue.

Solution:

We know that the revenue is given by the product of the number of items sold times the price of each item. Thus $R(x)=x(100-2 x)$ which yields an equation $R(x)=-2 x^{2}+100 x$ which is quadratic in x, i.e., whose graph is a parabola and it opens down since $a=$ $-1<0$. Hence it has a maximum that is attained at its vertex: $V=\left(-\frac{b}{2 a}, R\left(-\frac{b}{2 a}\right)\right)=$ $\left(-\frac{100}{2(-2)}, R\left(\frac{100}{25}\right)\right)=(25,1250)$. Thus the maximun revenue is $\$ 1,250$ and occurs when 25 bizz are sold.

Problem 7 An object is thrown upward with initial velocity 10 feet per second from an initial height of 11 feet. Then its height after t seconds is given by $h(t)=-t^{2}+10 t+11$. Find the maximum height that the object will attain and how long it will take for the object to hit the ground.

Solution:

The maximum height will be attained at the vertex of the parabola. hence we have $V=\left(-\frac{b}{2 a}, h\left(-\frac{b}{2 a}\right)\right)=\left(-\frac{10}{2(-1)}, h\left(\frac{10}{2}\right)\right)=(5, h(5))=(5,36)$. Thus after $t=5$ seconds the object will reach its maximum height $h=36$ feet. The object will hit the ground when $h=0$. Thus we have $-t^{2}+10 t+11=0$, whence $t^{2}-10 t-11=0$, i.e., $(t-11)(t+1)=0$ and therefore $t=-1$ or $t=11$. But time cannot be negative, whence the object will hit the ground after $t=11$ seconds.

Problem 8 Create the sign table and graph the function $f(x)=x^{3}-3 x^{2}$.

Solution:

First factor into linear terms to find the zeros of the function: $x^{3}-3 x^{2}=0$ implies $x^{2}(x-3)=0$, whence $x=0$ or $x=3$. Create now the sign table to find that $f(x) \leq 0$, if $x \leq 3$ and $f(x) \geq 0$ if $x \geq 3$. Now put the zeros on your coordinate system and plot the graph according to the data in the sign table.

