HOMEWORK 5 - MATH 111

DUE DATE: Friday, February 28

INSTRUCTOR: George Voutsadakis
Read each problem very carefully before starting to solve it. Each question is worth 1 point. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

1. Create the sign table and graph the function $f(x)=x^{4}-7 x^{2}+12$.
2. Study the function $f(x)=\frac{3 x-6}{6 x-1}$. (Studying here means what we did in class for rational functions: Find the domain, find the x - and y-intercepts, find the horizontal and vertical asymptotes and then roughly plot the graph.)
3. Find the equations of the vertical and horizontal asymptotes of the function $f(x)=\frac{x^{2}-2 x-3}{x^{2}-7 x+10}$.
4. Graph on the same axes the functions $f(x)=7^{x}, g(x)=7^{-x}$ and $h(x)=-7^{x}$. Before graphing compute their values at $x=-1, x=0$ and $x=1$ and depict those clearly both on a small table and on your graphs.
5. Solve the equation $7^{x^{2}}=49^{4 x-\frac{7}{2}}$.
6. Solve the equation $11^{-2 x+5}=\left(\frac{1}{11}\right)^{-2 x+3}$.
7. Culture studies in the lab have determined that the population of an organism A as a function of time t is given by $f(t)=e^{t^{2}}$. At the same time, the population of another organism B in the same culture has been increasing according to the function $g(t)=\sqrt{e}{ }^{16 t+40}$. At what time will the two organisms have the same populations in the culture?
8. Compute $\ln (\sqrt[7]{e})$ and $\ln \left(e^{13}\right)$ without using a calculator.
