HOMEWORK 5: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 Create the sign table and graph the function $f(x) = x^4 - 7x^2 + 12$.

Solution:

We have f(x) = 0 implies $(x^2 - 3)(x^2 - 4) = 0$, whence $(x - \sqrt{3})(x + \sqrt{3})(x - 2)(x + 2) = 0$, and therefore the sign table must have four points $-2, -\sqrt{3}, \sqrt{3}$ and 2 and five rows corresponding to $x - \sqrt{3}, x + \sqrt{3}, x - 2, x + 2$ and f(x). The sign of f(x) turns out to be + if x < -2, - if $-2 < x < -\sqrt{3}$, + if $-\sqrt{3} < x < \sqrt{3}$, - if $-\sqrt{3} < x < 2$ and, finally + if x > 2.

The rough sketch follows:

Problem 2 Study the function $f(x) = \frac{3x-6}{6x-1}$. (Studying here means what we did in class for rational functions: Find the domain, find the x- and y-intercepts, find the horizontal and vertical asymptotes and then roughly plot the graph.)

Solution:

The domain is $D(f) = \mathbb{R} - \{\frac{1}{6}\}$, since $\frac{1}{6}$ is a root of the denominator. For the *x*-intercept, set y = 0. Then 3x - 6 = 0, whence x = 2. Thus (2, 0) is the *x*-intercept. For the *y*-intercept, set x = 0. We get y = 6, i.e., (0, 6) is the *y*-intercept. The horizontal asymptote is $y = \frac{3}{6} = \frac{1}{2}$ and the vertical asymptote is $x = \frac{1}{6}$.

The rough sketch follows:

Problem 3 Find the equations of the vertical and horizontal asymptotes of the function $f(x) = \frac{x^2 - 2x - 3}{x^2 - 7x + 10}$.

Solution:

The horizontal asymptote is $y = \frac{1}{1} = 1$. To find the vertical asymptotes, we factor both numerator and denominator into linear factors: $f(x) = \frac{(x-3)(x+1)}{(x-5)(x-2)}$. Thus, the two vertical asymptotes occur at the roots of the denominator: x = 2 and x = 5.

Problem 4 Graph on the same axes the functions $f(x) = 7^x$, $g(x) = 7^{-x}$ and $h(x) = -7^x$. Before graphing compute their values at x = -1, x = 0 and x = 1 and depict those clearly both on a small table and on your graphs.

Solution:

We have

x	f(x)	g(x)	h(x)
-1	$\frac{1}{7}$	7	$-\frac{1}{7}$
0	1	1	-1
1	7	$\frac{1}{7}$	-7

The graphs follow:

Problem 5 Solve the equation $7^{x^2} = 49^{4x-\frac{7}{2}}$.

Solution:

We have $7^{x^2} = 49^{4x-\frac{7}{2}}$ implies $7^{x^2} = (7^2)^{4x-\frac{7}{2}}$, whence $x^2 = 2(4x - \frac{7}{2})$. Therefore $x^2 = 8x - 7$, which yields $x^2 - 8x + 7 = 0$. This gives (x - 7)(x - 1) = 0, i.e., x = 1 or x = 7.

Problem 6 Solve the equation $11^{-2x+5} = (\frac{1}{11})^{-2x+3}$.

Solution:

We have $11^{-2x+5} = (\frac{1}{11})^{-2x+3}$ implies $11^{-2x+5} = (11^{-1})^{-2x+3}$, whence -2x + 5 = -(-2x+3). Therefore -2x + 5 = 2x - 3. Hence 4x = 8, which, finally, yields x = 2.

Problem 7 Culture studies in the lab have determined that the population of an organism A as a function of time t is given by $f(t) = e^{t^2}$. At the same time, the population of another organism B in the same culture has been increasing according to the function $g(t) = \sqrt{e^{16t+40}}$. At what time will the two organisms have the same populations in the culture?

Solution:

We have $e^{t^2} = \sqrt{e^{16t+40}}$, whence $e^{t^2} = (e^{\frac{1}{2}})^{16t+40}$, i.e., $t^2 = \frac{1}{2}(16t+40)$. This gives $t^2 = 8t+20$, whence $t^2 - 8t - 20 = 0$. We thus get (t-10)(t+2) = 0, i.e., t = -2 or t = 10. Since t represents time t = 10.

Problem 8 Compute $\ln(\sqrt[7]{e})$ and $\ln(e^{13})$ without using a calculator.

Solution:

We get $\ln(\sqrt[7]{e}) = \ln e^{\frac{1}{7}} = \frac{1}{7}$. Similarly, $\ln(e^{13}) = 13$.