HOMEWORK 5: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 Create the sign table and graph the function $f(x)=x^{4}-7 x^{2}+12$.

Solution:

We have $f(x)=0$ implies $\left(x^{2}-3\right)\left(x^{2}-4\right)=0$, whence $(x-\sqrt{3})(x+\sqrt{3})(x-2)(x+2)=$ 0 , and therefore the sign table must have four points $-2,-\sqrt{3}, \sqrt{3}$ and 2 and five rows corresponding to $x-\sqrt{3}, x+\sqrt{3}, x-2, x+2$ and $f(x)$. The sign of $f(x)$ turns out to be + if $x<-2,-$ if $-2<x<-\sqrt{3},+$ if $-\sqrt{3}<x<\sqrt{3}$, - if $-\sqrt{3}<x<2$ and, finally + if $x>2$.

The rough sketch follows:

Problem 2 Study the function $f(x)=\frac{3 x-6}{6 x-1}$. (Studying here means what we did in class for rational functions: Find the domain, find the x - and y-intercepts, find the horizontal and vertical asymptotes and then roughly plot the graph.)

Solution:

The domain is $D(f)=\mathbb{R}-\left\{\frac{1}{6}\right\}$, since $\frac{1}{6}$ is a root of the denominator. For the x intercept, set $y=0$. Then $3 x-6=0$, whence $x=2$. Thus $(2,0)$ is the x-intercept. For the y-intercept, set $x=0$. We get $y=6$, i.e., $(0,6)$ is the y-intercept. The horizontal asymptote is $y=\frac{3}{6}=\frac{1}{2}$ and the vertical asymptote is $x=\frac{1}{6}$.

The rough sketch follows:

Problem 3 Find the equations of the vertical and horizontal asymptotes of the function $f(x)=\frac{x^{2}-2 x-3}{x^{2}-7 x+10}$.

Solution:

The horizontal asymptote is $y=\frac{1}{1}=1$. To find the vertical asymptotes, we factor both numerator and denominator into linear factors: $f(x)=\frac{(x-3)(x+1)}{(x-5)(x-2)}$. Thus, the two vertical asymptotes occur at the roots of the denominator: $x=2$ and $x=5$.

Problem 4 Graph on the same axes the functions $f(x)=7^{x}, g(x)=7^{-x}$ and $h(x)=-7^{x}$. Before graphing compute their values at $x=-1, x=0$ and $x=1$ and depict those clearly both on a small table and on your graphs.

Solution:

We have

x	$f(x)$	$g(x)$	$h(x)$
-1	$\frac{1}{7}$	7	$-\frac{1}{7}$
0	1	1	-1
1	7	$\frac{1}{7}$	-7

The graphs follow:

Problem 5 Solve the equation $7^{x^{2}}=49^{4 x-\frac{7}{2}}$.

Solution:

We have $7^{x^{2}}=49^{4 x-\frac{7}{2}}$ implies $7^{x^{2}}=\left(7^{2}\right)^{4 x-\frac{7}{2}}$, whence $x^{2}=2\left(4 x-\frac{7}{2}\right)$. Therefore $x^{2}=8 x-7$, which yields $x^{2}-8 x+7=0$. This gives $(x-7)(x-1)=0$, i.e., $x=1$ or $x=7$.

Problem 6 Solve the equation $11^{-2 x+5}=\left(\frac{1}{11}\right)^{-2 x+3}$.

Solution:

We have $11^{-2 x+5}=\left(\frac{1}{11}\right)^{-2 x+3}$ implies $11^{-2 x+5}=\left(11^{-1}\right)^{-2 x+3}$, whence $-2 x+5=$ $-(-2 x+3)$. Therefore $-2 x+5=2 x-3$. Hence $4 x=8$, which, finally, yields $x=2$.

Problem 7 Culture studies in the lab have determined that the population of an organism A as a function of time t is given by $f(t)=e^{t^{2}}$. At the same time, the population of another organism B in the same culture has been increasing according to the function $g(t)=$ $\sqrt{e}{ }^{16 t+40}$. At what time will the two organisms have the same populations in the culture?

Solution:

We have $e^{t^{2}}=\sqrt{e}^{16 t+40}$, whence $e^{t^{2}}=\left(e^{\frac{1}{2}}\right)^{16 t+40}$, i.e., $t^{2}=\frac{1}{2}(16 t+40)$. This gives $t^{2}=8 t+20$, whence $t^{2}-8 t-20=0$. We thus get $(t-10)(t+2)=0$, i.e., $t=-2$ or $t=10$. Since t represents time $t=10$.

Problem 8 Compute $\ln (\sqrt[7]{e})$ and $\ln \left(e^{13}\right)$ without using a calculator.

Solution:

We get $\ln (\sqrt[7]{e})=\ln e^{\frac{1}{7}}=\frac{1}{7}$. Similarly, $\ln \left(e^{13}\right)=13$.

