HOMEWORK 7 - MATH 111

DUE DATE: Friday, March 21

INSTRUCTOR: George Voutsadakis
Read each problem very carefully before starting to solve it. Each question is worth 1 point. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

1. Find the present value of the future amount $\$ 10,000$ compounded semiannually at 6% for 5 years.
2. Find the sum of the first five terms of the geometric sequence with first term $a=3$ and common ratio $r=2$.
3. Solve the systems

$$
\left\{\begin{aligned}
3 x+5 y & =7 \\
-x+2 y & =5
\end{aligned}\right\}, \quad\left\{\begin{aligned}
&-2 x+3 y=1 \\
& 8 x-12 y= \\
&-4
\end{aligned}\right\}
$$

by the substitution method.
4. Solve the system $\left\{\begin{array}{rlrr}x-2 y+z & =11 \\ -x+2 y+z & = & -3 \\ 2 x-3 y+2 z & = & 20\end{array}\right\}$ by using allowable operations on the equations (Gauss elimination).
5. Solve the system $\left\{\begin{array}{rrrr}x+y+z & =4 \\ -x-2 y+3 z & = & 9 \\ 2 x+y-2 z & = & -3\end{array}\right\}$ by using the GaussJordan method (matrix row operations).
6. Solve the system $\left\{\begin{array}{rrrr}x+2 y-z & = & 1 \\ -3 x-y+ & z & = & -13 \\ 2 x+4 y-2 z & = & 2\end{array}\right\}$ by using the Gauss-Jordan method (matrix row operations).
7. Let $A=\left[\begin{array}{cc}-1 & -2 \\ 5 & -1\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & -7 \\ -8 & 2\end{array}\right]$. Compute $A+B, A-B$ and $3 A-2 B$.
8. Let $A=\left[\begin{array}{ccc}1 & 0 & 3 \\ -1 & -3 & 7\end{array}\right]$ and $B=\left[\begin{array}{ccc}-1 & 2 & -7 \\ 3 & 2 & 10\end{array}\right]$. Compute $A-B$ and $-2 A+5 B$.

