HOMEWORK 7: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 Find the present value of the future amount \$10,000 compounded semiannually at 6% for 5 years.

Solution:

We have $A=P\left(1+\frac{r}{m}\right)^{m t}$, i.e., $P=\frac{A}{\left(1+\frac{r}{m}\right)^{m t}}$, whence $P=\frac{10000}{\left(1+\frac{0.06}{2}\right)^{2.5}}$ and, therefore, $P=\frac{10000}{1.03^{10}}$.

Problem 2 Find the sum of the first five terms of the geometric sequence with first term $a=3$ and common ratio $r=2$.

Solution:

$$
S_{5}=a \frac{r^{n}-1}{r-1}=3 \frac{2^{5}-1}{2-1}=3 \cdot 31=93
$$

Problem 3 Solve the systems

$$
\left\{\begin{aligned}
3 x+5 y & =7 \\
-x+2 y & =5
\end{aligned}\right\}, \quad\left\{\begin{aligned}
-2 x+3 y & =1 \\
8 x-12 y & =
\end{aligned}\right\}
$$

by the substitution method.

Solution:

(a) We have $x=2 y-5$, by solving the second equation for x. Now substituting into the first equation, we get $3(2 y-5)+5 y=7$, whence $6 y-15+5 y=7$ and, thus, $11 y=22$. Therefore $y=2$ and, hence, $x=2 \cdot 2-5=-1$. Thus, we have the solution $(x, y)=(-1,2)$.
(b) Solving the first equation for x we have $2 x=3 y-1$, whence $x=\frac{3}{2} y-\frac{1}{2}$. Substituting into the second equation, we get $8\left(\frac{3}{2} y-\frac{1}{2}\right)-12 y=-4$, i.e., $12 y-4-12 y=-4$, whence $0=0$. Thus, our system has infinitely many solutions, given by $(x, y)=\left(\frac{3}{2} y-\frac{1}{2}, y\right)$, y any real number.

Problem 4 Solve the system $\left\{\begin{aligned} x-2 y+z & =11 \\ -x+2 y+ & z \\ 2 x-3 y+2 z & =20\end{aligned}\right\}$ by using allowable operations on the equations (Gauss elimination).

Solution:

$$
\left\{\begin{array}{rlr}
x-2 y+z & =11 \\
-x+2 y+z & =-3 \\
2 x-3 y+2 z & =20
\end{array}\right\} \longrightarrow\left\{\begin{array}{rlrl}
x-2 y+ & z & 11 \\
& 2 z & = & 8 \\
y & & -2
\end{array}\right\} \longrightarrow
$$

$$
\left\{\begin{aligned}
x-2 y+z & = & 11 \\
z & = & 4 \\
y & = & -2
\end{aligned}\right\} \longrightarrow\left\{\begin{array}{rlr}
x & z & = \\
& y & \\
& & -2
\end{array}\right\}
$$

Thus, the solution is $(x, y, z)=(3,-2,4)$.

Problem 5 Solve the system $\left\{\begin{array}{rll}x+y+z & =4 \\ -x-2 y+3 z & = \\ 2 x+y-2 z & = & -3\end{array}\right\}$ by using the Gauss-Jordan method (matrix row operations).

Solution:

$$
\left.\begin{array}{c}
{\left[\begin{array}{rrr|r}
1 & 1 & 1 & 4 \\
-1 & -2 & 3 & 9 \\
2 & 1 & -2 & -3
\end{array}\right] \longrightarrow\left[\begin{array}{rrr|r}
1 & 1 & 1 & 4 \\
0 & -1 & 4 & 13 \\
0 & -1 & -4 & -11
\end{array}\right] \longrightarrow\left[\begin{array}{rrr|r}
1 & 1 & 1 & 4 \\
0 & 1 & -4 & -13 \\
0 & -1 & -4 & -11
\end{array}\right]} \\
{\left[\begin{array}{rrr|r}
1 & 0 & 5 & 17 \\
0 & 1 & -4 & -13 \\
0 & 0 & -8 & -24
\end{array}\right]}
\end{array}\right]+\left[\begin{array}{rrr|r}
1 & 0 & 5 & 17 \\
0 & 1 & -4 & -13 \\
0 & 0 & 1 & 3
\end{array}\right] \longrightarrow\left[\begin{array}{rrr|r}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 3
\end{array}\right] .
$$

Thus, the solution is $(x, y, z)=(2,-1,3)$.

Problem 6 Solve the system $\left\{\begin{array}{rlrl}x+2 y-z & = \\ -3 x-y+ & = & -13 \\ 2 x+4 y-2 z & = & 2\end{array}\right\}$ by using the GaussJordan method (matrix row operations).

Solution:

$$
\begin{aligned}
{\left[\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
-3 & -1 & 1 & -13 \\
2 & 4 & -2 & 2
\end{array}\right] \longrightarrow } & {\left[\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & 5 & -2 & -10 \\
0 & 0 & 0 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & 1 & -\frac{2}{5} & -2 \\
0 & 0 & 0 & 0
\end{array}\right] \longrightarrow }
\end{aligned}
$$

Thus, we have infinitely many solutions given by $(x, y, z)=\left(5+\frac{1}{5} z,-2+\frac{2}{5} z, z\right)$, with z any real number.

Problem 7 Let $A=\left[\begin{array}{cc}-1 & -2 \\ 5 & -1\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & -7 \\ -8 & 2\end{array}\right]$. Compute $A+B, A-B$ and $3 A-2 B$.

Solution:

We have

$$
\begin{aligned}
& A+B=\left[\begin{array}{cc}
-1 & -2 \\
5 & -1
\end{array}\right]+\left[\begin{array}{cc}
3 & -7 \\
-8 & 2
\end{array}\right]=\left[\begin{array}{cc}
2 & -9 \\
-3 & 1
\end{array}\right] \\
& A-B=\left[\begin{array}{cc}
-1 & -2 \\
5 & -1
\end{array}\right]-\left[\begin{array}{cc}
3 & -7 \\
-8 & 2
\end{array}\right]=\left[\begin{array}{cc}
-4 & 5 \\
13 & -3
\end{array}\right]
\end{aligned}
$$

$3 A-2 B=3\left[\begin{array}{cc}-1 & -2 \\ 5 & -1\end{array}\right]-2\left[\begin{array}{cc}3 & -7 \\ -8 & 2\end{array}\right]=\left[\begin{array}{cc}-3 & -6 \\ 15 & -3\end{array}\right]-\left[\begin{array}{cc}6 & -14 \\ -16 & 4\end{array}\right]=\left[\begin{array}{cc}-9 & 8 \\ 31 & -7\end{array}\right]$.

Problem 8 Let $A=\left[\begin{array}{ccc}1 & 0 & 3 \\ -1 & -3 & 7\end{array}\right]$ and $B=\left[\begin{array}{ccc}-1 & 2 & -7 \\ 3 & 2 & 10\end{array}\right]$. Compute $A-B$ and $-2 A+5 B$.

Solution:

$$
\begin{gathered}
A-B=\left[\begin{array}{ccc}
1 & 0 & 3 \\
-1 & -3 & 7
\end{array}\right]-\left[\begin{array}{ccc}
-1 & 2 & -7 \\
3 & 2 & 10
\end{array}\right]=\left[\begin{array}{ccc}
2 & -2 & 10 \\
-4 & -5 & -3
\end{array}\right] . \\
-2 A+5 B=-2\left[\begin{array}{ccc}
1 & 0 & 3 \\
-1 & -3 & 7
\end{array}\right]+5\left[\begin{array}{ccc}
-1 & 2 & -7 \\
3 & 2 & 10
\end{array}\right]= \\
{\left[\begin{array}{ccc}
-2 & 0 & -6 \\
2 & 6 & -14
\end{array}\right]+\left[\begin{array}{ccc}
-5 & 10 & -35 \\
15 & 10 & 50
\end{array}\right]=\left[\begin{array}{ccc}
-7 & 10 & -41 \\
17 & 16 & 36
\end{array}\right] .}
\end{gathered}
$$

