EXAM 2: SOLUTIONS - MATH 341
INSTRUCTOR: George Voutsadakis

Problem 1 Let \(G \) be a nonempty finite set closed under an associative operation such that both the left and the right cancellation laws hold. Show that \(G \) under this operation is a group.

Solution:
Suppose that \(G \) is a nonempty finite set closed under an operation \(*\), such that

1. \(*\) is associative, i.e., \((a * b) * c = a * (b * c) \), for all \(a, b, c \in G \),

2. the left cancellation law for \(*\) holds, i.e., \(a * b = a * c \) implies \(b = c \), for all \(a, b, c \in G \), and

3. the right cancellation law for \(*\) holds, i.e., \(b * a = c * a \) implies \(b = c \), for all \(a, b, c \in G \).

To show that under these conditions \(\langle G, * \rangle \) is a group we need to prove that it has an identity and that every element in \(G \) has an inverse in \(G \) with respect to \(*\).

Let \(a \in G \), which exists since \(G \neq \emptyset \). Consider the set

\[
A = \{a^n := \underbrace{a * a * \ldots * a}_{n} : n \geq 1 \} \subseteq G.
\]

Since \(G \) is finite, there exist \(n, m \in \mathbb{N}^* \), with \(m < n \), such that \(a^m = a^n \). Hence \(a^m = a^{m+(n-m)} \), whence \(a^m = a^m * a^{n-m} \). Now set \(e := a^{n-m} \). we will show that this \(e \) is the identity in \(G \) for \(*\), i.e., that \(b * e = e * b = b \), for all \(b \in G \). We have

\[
\begin{align*}
 b * a^m &= (b * a^m) * a^{n-m} \\
 &= b * (a^m * a^{n-m}) \\
 &= b * (a^{n-m} * a^m) \\
 &= (b * a^{n-m}) * a^m \\
 &= (b * e) * a^m.
\end{align*}
\]

Now the right cancellation law applies to give \(b = b * e \). For the left-hand side identity we work symmetrically.

Now consider \(b \in G \). We have, as above for \(a \) that \(b^p = b^q \), for some \(p, q \in \mathbb{N}^* \), with \(p < q \). Then \(b^p * e = b^q = b^p * b^{q-p} \), whence, by the left cancellation law, \(e = b^{q-p} \). Since \(q - p \geq 1 \), we either have \(q - p = 1 \) or \(q - p > 1 \). If \(q - p = 1 \), then \(b = e \), whence \(e^{-1} = e \).

If \(q - p > 1 \), then \(e = b * b^{q-p-1} = b^{q-p-1} * b \), whence \(b^{-1} = b^{q-p-1} \). Thus, in every case \(b \) has an inverse in \(G \) with respect to \(*\). This shows that \(\langle G, * \rangle \) is a group. ■

Problem 2 Let \(G \) be a group, \(a \in G \) and \(m, n \) relatively prime integers. Show that if \(a^m = e \), then there exists an element \(b \in G \), such that \(a = b^n \).
Solution:
Since $a^m = e$ we must have that $|a|m$, i.e., there exists a positive integer k, such
that $m = k|a|$. Now m, n relatively prime implies that there exist integers x, y, such that
$xm + yn = 1$. Combining the two previous relations, we obtain $xk|a| + yn = 1$.
Now set $b = a^y \in G$. We have
\[
 b^n = (a^y)^n = a^{yn} = a^{1-xk|a|} = a^{(a|a|)-xk} = a.
\]

Problem 3 Let G be a group and $a \in G$. Show that the centralizer $C(a)$ is a subgroup of G.

Solution:
Suppose that $b, c \in C(a)$, i.e., $ab = ba$ and $ac = ca$. We first show that
$bc \in C(a)$, i.e., that $a(bc) = (bc)a$. We have
\[
 a(bc) = (ab)c = (ba)c = b(ac) = b(ca) = (bc)a.
\]
Finally, we show that $b^{-1} \in C(a)$, i.e., $ab^{-1} = a^{-1}a$. Since $b \in C(a)$, we get $ab = ba$, whence
$ab^{-1}bab^{-1} = b^{-1}bab^{-1}$ and, therefore, $b^{-1}a = ab^{-1}$.

Problem 4 The stochastic group $\Sigma(2, \mathbb{R})$ consists of all those matrices in $GL(2, \mathbb{R})$
whose column sums are 1. Show that this is in fact a subgroup of $GL(2, \mathbb{R})$.

Solution:
Let \[
\left[\begin{array}{aa}
 a & b \\
 c & d \\
\end{array}\right], \left[\begin{array}{aa}
 x & y \\
 z & w \\
\end{array}\right] \in \Sigma(2, \mathbb{R}).
\]
We thus have $a + c = b + d = 1$ and $x + z = y + w = 1$. We show that
\[
\left[\begin{array}{aa}
 a & b \\
 c & d \\
\end{array}\right], \left[\begin{array}{aa}
 x & y \\
 z & w \\
\end{array}\right] \in \Sigma(2, \mathbb{R}).
\]
We have
\[
\left[\begin{array}{aa}
 a & b \\
 c & d \\
\end{array}\right], \left[\begin{array}{aa}
 x & y \\
 z & w \\
\end{array}\right] \in \Sigma(2, \mathbb{R}),
\]
and $ax + bz + cx + dz = (a+c)x + (b+d)z = x + z = 1$ and
\[
ay + bw + cy + dw = (a+c)y + (b+d)w = y + w = 1.
\]
To show that
\[
\left[\begin{array}{aa}
 a & b \\
 c & d \\
\end{array}\right]^{-1} = \left[\begin{array}{aa}
 d & -b \\
 -a & d \\
\end{array}\right], \left[\begin{array}{aa}
 d & -b \\
 -a & d \\
\end{array}\right] \in \Sigma(2, \mathbb{R}),
\]
note that
\[
ad - bc = a(1-b) - b(1-a) = a - ab - b + ab = a - b
\]
and, similarly
\[ad - bc = (1 - c)d - (1 - d)c = d - cd - c + dc = d - c. \]
Therefore \(\frac{d}{ad - bc} + \frac{-c}{ad - bc} = 1 \) and \(\frac{-b}{ad - bc} + \frac{a}{ad - bc} = \frac{a - b}{ad - bc} = 1. \)

Problem 5

1. Let \(G = \langle a \rangle \) be a cyclic subgroup of order 20. Find all the elements \(b \in G \) of order \(|b| = 10 \).

2. Let \(H \) and \(K \) be cyclic subgroups of an Abelian group \(G \), with \(|H| = 10 \) and \(|K| = 14 \). Show that \(G \) contains a cyclic subgroup of order 70.

Solution:

1. Let \(b = a^n \) be such that \(|b| = 10 \). Then \(|a^n| = 10 \), whence \(\frac{20}{\gcd(n,20)} = 10 \). Therefore, we must have \(\gcd(n,20) = 2 \). The only four numbers \(1 \leq n \leq 20 \) that satisfy this condition are 2, 6, 14 and 18. Hence
\[a^2, a^6, a^{14}, a^{18} \]
is the list of all elements in \(G \) of order 10.

2. Let \(H = \langle a \rangle \) and \(K = \langle b \rangle \), with \(|a| = 10 \) and \(|b| = 14 \). Then the element \(a^2 \in H \) has order \(|a^2| = 5 \). We claim that \(|a^2b| = 70 \), whence the element \(a^2b \in G \) generates a cyclic subgroup of order 70.

First note that \((a^2b)^{70} = (a^2)^{70}b^{70} = a^{140}b^{70} = (a^{10})^{14}(b^{14})^5 = e. \)
Suppose that \((a^2b)^n = e. \) Then \(a^{2n}b^n = e, \) whence \(a^{2n} = b^{-n} \in \langle a^2 \rangle \cap K. \) But \(\langle a^2 \rangle \cap K = \{e\}, \) since their orders are relatively prime, whence we must have \(a^{2n} = e = b^n. \) Therefore \(5 \nmid n \) and \(14 \nmid n, \) whence \(70 \nmid n, \) i.e., \(n \geq 70. \) This proves that \(|a^2b| = 70, \) as was to be shown.

\[\blacksquare \]