HOMEWORK 2 - MATH 341 DUE DATE: Tuesday, February 11

INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. Each question is worth 5 points. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

- 1. (a) Show that $G = \mathbf{C}^* = \mathbf{C} \{0\}$ under complex multiplication forms a group.
 - (b) Construct the group table of V and Q_8 and determine whether they are Abelian.
 - (c) Find two elements a, b in S_3 such that $(ab)^2 \neq a^2 b^2$.
- 2. (a) Show that if every element of a group G is equal to its inverse, then G is Abelian.
 - (b) Let G be a finite Abelian group such that for all $a \in G, a \neq e$, we have $a^2 \neq e$. If a_1, a_2, \ldots, a_n are all the elements of G with no repetitions, evaluate the product $a_1a_2 \ldots a_n$.
- 3. (a) Show that the nonzero elements of \mathbf{Z}_p , where p is a prime, form a group under multiplication mod p.
 - (b) (Wilson's Theorem) Prove that if p is a prime, then $(p-1)! \equiv -1 \mod p$.
- 4. (a) Let $G = \{a + b\sqrt{2} : a, b \in \mathbf{Q}\}$. Show that G is a subgroup of \mathbb{R} under addition.
 - (b) Let $G = \{a + bi : a, b \in \mathbb{R}, a^2 + b^2 = 1\}$. Determine whether or not G is a subgroup of \mathbb{C}^* under multiplication.
- 5. (a) Show that if H and K are subgroups of G, then $H \cap K$ is also a subgroup of G.
 - (b) Let G be a group, $a \in G$. Show that the centralizer C(a) = G if and only if $a \in Z(G)$, the center of G.