HOMEWORK 6: SOLUTIONS - MATH 341 INSTRUCTOR: George Voutsadakis

Problem 1 (a) Find all the normal subgroups in $GL(2, \mathbb{Z}_2)$, the general linear group of 2×2 matrices with entries from \mathbb{Z}_2 .

(b) Find all the normal subgroups in D_4 .

Solution:

- (a) In Problem 5 of Homework 5, we saw that $\operatorname{GL}(2, \mathbb{Z}_2) \cong S_3$. So the normal subgroups of $\operatorname{GL}(2, \mathbb{Z}_2)$ are in one to one correspondence with the normal subgroups of S_3 . These, as we know, are $\{e\}, A_3$ and S_3 . Thus, the normal subgroups of $\operatorname{GL}(2, \mathbb{Z}_2)$ are $\{I\}, \{I, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\}$ and $\operatorname{GL}(2, \mathbb{Z}_2)$.
- (b) Recall that $D_4 = \{\rho_0, \rho, \rho^2, \rho^3, \tau, \rho\tau, \rho^2\tau, \rho^3\tau\}$. The following are normal subgroups of D_4 : $\{\rho_0\}$, since ρ_0 commutes with all elements of D_4 , $Z(D_4) = \{\rho_0, \rho^2\}$ because the elements in the center commute with all other elements of the group, $\langle \rho \rangle =$ $\{\rho_0, \rho, \rho^2, \rho^3\}$, $\langle \rho^2, \tau \rangle = \{\rho_0, \rho^2, \tau, \rho^2\tau\}$ and $\langle \rho^2, \rho\tau \rangle = \{\rho_0, \rho^2, \rho\tau, \rho^3\tau\}$, since all three have order 4 and, therefore, have index 2 in D_4 , and, finally, D_4 itself. One checks that no other subgroup of D_4 is normal in D_4 .

Problem 2 (a) Let $\phi : G \to G'$ be a homomorphism and $H' \triangleleft G'$. Show that $H = \phi^{-1}(H') \triangleleft G$.

(b) Show that if $H \triangleleft G$ and $K \triangleleft G$, then $H \cap K \triangleleft G$.

Solution:

- (a) Since $H' \leq G'$, we conclude that $\phi^{-1}(H') \leq G$. To show that $\phi^{-1}(H') \triangleleft G$, we use the normal subgroup test. To this end, let $h \in \phi^{-1}(H')$ and $g \in G$. Then $\phi(h) \in H'$, whence, since $H' \triangleleft G'$, we get $\phi(g)\phi(h)\phi(g)^{-1} \in H'$, i.e., $\phi(ghg^{-1}) \in H'$, which yields that $ghg^{-1} \in \phi^{-1}(H')$ and $\phi^{-1}(H') \triangleleft G$, as was to be shown.
- (b) Now suppose that $H \triangleleft G$ and $K \triangleleft G$ and consider $m \in H \cap K, g \in G$. We apply the normal subgroup test. We have that $gmg^{-1} \in H$, since $m \in H$ and $H \triangleleft G$, and $gmg^{-1} \in K$, since $m \in K$ and $K \triangleleft G$. Therefore $gmg^{-1} \in H \cap K$, which yields that $H \cap K \triangleleft G$.

Problem 3 (a) Show that if $H \triangleleft G$ and $K \triangleleft G$, then $HK \triangleleft G$.

(b) Let H and K be subgroups of a group G. Show that HK is a subgroup of G if and only if HK = KH.

Solution:

- (a) We have for $g \in G$, gHK = HgK = HKg, where the first equality follows from the normality of H and the second equality follows from the normality of K. Therefore HK is normal in G.
- (b) (From Topics in Algebra by I.N. Herstein) Suppose, first, that HK = KH; that is, if h ∈ H and k ∈ K, then hk = k₁h₁, for some k₁ ∈ K, h₁ ∈ H. To prove that HK is a subgroup we must verify that it is closed and every element in HK has its inverse in HK. Let's show the closure first; so suppose x = hk ∈ HK and y = h'k' ∈ HK. Then xy = hkh'k', but since kh' ∈ KH = HK, kh' = h₂k₂ with h₂ ∈ H, k₂ ∈ K. Hence xy = h(h₂k₂)k' = (hh₂)(k₂k') ∈ HK, and HK is closed. Also x⁻¹ = (hk)⁻¹ = k⁻¹h⁻¹ ∈ KH = HK, so x⁻¹ ∈ HK. Thus HK ≤ G.

On the other hand, if HK is a subgroup of G, then for any $h \in H, k \in K, h^{-1}k^{-1} \in HK$ and so $kh = (h^{-1}k^{-1})^{-1} \in HK$. Thus $KH \subseteq HK$. Now if x is any element of $HK, x^{-1} = hk \in HK$ and so $x = (x^{-1})^{-1} = (hk)^{-1} = k^{-1}h^{-1} \in KH$, so $HK \subseteq KH$. Thus HK = KH.

Problem 4 Find the order of the indicated element in the indicated quotient group:

- (a) $2 + \langle 6 \rangle$ in $\mathbf{Z}_{15} / \langle 6 \rangle$.
- (b) $i\langle j\rangle$ in $Q_8/\langle j\rangle$.

Solution:

- (a) We have that $\langle 6 \rangle = \{0, 3, 6, 9, 12\}$, whence $[\mathbf{Z}_{15} : \langle 6 \rangle] = \frac{15}{5} = 3$. The three cosets are $\langle 6 \rangle, 1 + \langle 6 \rangle$ and $2 + \langle 6 \rangle$ and form a quotient group isomorphic to \mathbf{Z}_3 . The coset $2 + \langle 6 \rangle$ has order 3 in $\mathbf{Z}_{15}/\langle 6 \rangle$.
- (b) Similarly, we have $\langle j \rangle = \{1, -1, j, -j\}$, whence $[Q_8 : \langle j \rangle] = \frac{8}{4} = 2$. The two cosets are $\langle j \rangle$ and $i \langle j \rangle = \{i, -i, k, -k\}$. Thus the group $Q_8 / \langle j \rangle$ is isomorphic to \mathbb{Z}_2 and the element $i \langle j \rangle$ has order 2.
- **Problem 5** (a) Let $\phi : G \to G'$ be an onto homomorphism with $\operatorname{Kern}(\phi) = K$, and let H' be a subgroup of G'. Show that there exists a subgroup H of G such that $K \subseteq H$ and $H/K \cong H'$.

(b) Let Z(G) be the center of a group G. Show that $Z(G) \triangleleft G$ and that, if G/Z(G) is cyclic, then G is Abelian.

Solution:

- (a) Let $H = \phi^{-1}(H')$. We know that since $H' \leq G'$, $H \leq G$. Suppose $k \in K$. Then $\phi(k) = e \in H'$, whence $k \in \phi^{-1}(H')$ and $K \subseteq H$. Consider now the restriction $\phi_H : H \to H'$ of ϕ on H. Since $H = \phi^{-1}(H')$, we get that ϕ_H is onto and $\operatorname{Kern}(\phi_H) = K$, whence, by the First Isomorphism Theorem, $H/K \cong H'$.
- (b) To show normality, let $z \in Z(G)$ and $g \in G$. Then $gzg^{-1} = zgg^{-1} = z \in Z(G)$, whence $Z(G) \triangleleft G$.

Finally, suppose that G/Z(G) is cyclic and let aZ(G) be a generator. Consider now $g, h \in G$. Since the coset space of Z(G) partitions G, there exist $x, y \in Z(G)$, such that $g = a^k x$ and $h = a^l y$, for some integers k, l. Therefore

$$gh = a^{k}xa^{l}y$$
$$= a^{k}a^{l}xy$$
$$= a^{k+l}yx$$
$$= a^{l}a^{k}yx$$
$$= a^{l}ya^{k}x$$
$$= hg$$

the second equality holding since $x \in Z(G)$, the third since $x, y \in Z(G)$ and the fifth since $y \in Z(G)$. This concludes the proof that G is abelian.