HOMEWORK 3: SOLUTIONS - MATH 490 INSTRUCTOR: George Voutsadakis

Problem 1 Let (X, \mathcal{T}) be a topological space that is metrizable. Prove that for each pair a, b of distinct points of X, there are open sets O_a and O_b containing a and b respectively, such that $O_a \cap O_b = \emptyset$. Prove that the topological space of Example 7 on page 72 is not metrizable.

Solution: Let $\langle X, d \rangle$ be the metric space whose open sets form the collection \mathcal{T} . Consider $a, b \in X$. The two open balls $O_a = B(a; \frac{d(a,b)}{2})$ and $O_b = B(b; \frac{d(a,b)}{2})$ are in \mathcal{T} and $a \in O_a, b \in O_b$, with $A_a \cap O_b = \emptyset$.

The space is $\langle \mathbf{N}^*, \mathcal{T} \rangle$ where $\mathcal{T} = \{\emptyset, O_1, O_2, \ldots\}$, with $O_n = \{n, n+1, \ldots\}, n \ge 1$. It is clearly not metrizable since given $m, n \in \mathbf{N}^*$, with m < n, any open set that contains m has to also contain n. Hence, there are no disjoint open neighborhoods of m, n.

Problem 2 Let (X, \mathcal{T}) be a topological space. Prove that \emptyset, X are closed sets, that a finite union of closed sets is a closed set, and that an arbitrary intersection of closed sets is a closed set.

Solution:

We have $C(\emptyset) = X$ and $C(X) = \emptyset$ and, since both X and \emptyset are open, we have that \emptyset and X are both closed as complements of open sets.

Now given F_1, \ldots, F_n closed, we have that

$$C(F_1 \cup \ldots \cup F_n) = C(F_1) \cap \ldots \cap C(F_n),$$

which is a finite intersection of open sets and is, therefore, open. Thus $F_1 \cup \ldots \cup F_n$ is closed.

Finally, given an arbitrary collection $\{F_{\alpha}\}_{\alpha \in I}$ of closed sets, we get

$$C(\bigcap_{\alpha \in I} F_{\alpha}) = \bigcup_{\alpha \in I} C(F_{\alpha})$$

which is an arbitrary union of open sets and is, therefore, open. hence $\bigcap_{\alpha \in I} F_{\alpha}$ is closed.

Problem 3 Prove that in a discrete topological space, each subset is simultaneously open and closed.

Solution:

Recall that in a discrete space every subset is open. Therefore every subset is open and, at the same time, has an open complement. Therefore every subset is simultaneously open and closed.

Problem 4 A family $\{A_{\alpha}\}_{\alpha \in I}$ of subsets is said to be mutually disjoint if for each distinct pair β, γ of indices $A_{\beta} \cap A_{\gamma} = \emptyset$. Prove that for each subset A of a topological space (X, \mathcal{T}) , the three sets $\operatorname{Int}(A)$, $\operatorname{Bdry}(A)$ and $\operatorname{Int}(C(A))$ are mutually disjoint and that $X = \operatorname{Int}(A) \cup \operatorname{Bdry}(A) \cup \operatorname{Int}(C(A))$.

Solution:

Recall that $x \in \text{Int}(A)$ if there exists an open set O, such that $x \in O \subseteq A$. Thus, this open set contains x and does not intersect C(A), which shows that $x \notin \overline{C(A)}$, whence $x \notin \text{Bdry}(A)$. Conversely, if $x \in \text{Bdry}(A)$, then $x \in \overline{C(A)}$, which shows that there does not exist open set O containing x such that $O \subseteq A$. Hence $x \notin \text{Int}(A)$. This shows that $\text{Int}(A) \cap \text{Bdry}(A) = \emptyset$. The proofs of the other two mutual disjointness relations are similar.

Now suppose that $x \notin Bdry(A)$. Hence $x \notin \overline{A}$ or $x \notin C(A)$. If the first condition holds, then there exists an open set O containing x and such that $O \cap A = \emptyset$. Thus $x \in O \subseteq C(A)$. This shows that $x \in Int(C(A))$. In the second case, one shows, similarly, that $x \in Int(A)$. Hence $X = Int(A) \cup Bdry(A) \cup Int(C(A))$.

Problem 5 In the real line prove that the boundary of the open interval (a,b) and the boundary of the closed interval [a,b] is $\{a,b\}$.

Solution:

We have that $\overline{(a,b)} = [a,b]$ and $\overline{C((a,b))} = \overline{(-\infty,a] \cup [b,\infty)} = (-\infty,a] \cup [b,\infty)$. Therefore $\operatorname{Bdry}((a,b)) = \overline{(a,b)} \cap \overline{C((a,b))} = \{a,b\}$. One handles the closed interval similarly.

Problem 6 Let A be a subset of a topological space. Prove that $Bdry(A) = \emptyset$ if and only if A is open and closed.

Solution:

Suppose, first, that A is both open and closed. Then C(A) is also both open and closed. Therefore $\overline{A} = A$ and $\overline{C(A)} = C(A)$. Therefore $\operatorname{Bdry}(A) = \overline{A} \cap \overline{C(A)} = A \cap C(A) = \emptyset$.

Suppose, conversely, that $\operatorname{Bdry}(A) = \emptyset$. Therefore $\overline{A} \cap \overline{C(A)} = \emptyset$. We show that both A and C(A) are open. Suppose that $a \in A$. Then $a \in \overline{A}$, whence, since $\overline{A} \cap \overline{C(A)} = \emptyset$, $a \notin \overline{C(A)}$. Thus, there exists an open set O, such that $a \in O$ and $O \cap C(A) = \emptyset$. But then $a \in O \subseteq A$, whence A is a neighborhood of a. Since a was arbitrary, A is a neighborhood of each of its points and is, therefore, open. A very similar argument, with the roles of A and C(A) interchanged, shows that C(A) is also open.

Problem 7 A subset A of a topological space (X, \mathcal{T}) is said to be dense in X if $\overline{A} = X$. Prove that if for each open set O we have $A \cap O \neq \emptyset$, then A is dense in X.

Solution:

We need to show that, if, for all open sets $O, A \cap O \neq \emptyset$, then $\overline{A} = X$. To this aim, let $x \in X$ and O open with $x \in O$. But, by the hypothesis, $O \cap A \neq \emptyset$, whence, since O was arbitrary, $x \in \overline{A}$. But x was also arbitrary, whence $X \subseteq \overline{A}$. The reverse inclusion is obvious, and, therefore, $\overline{A} = X$ and A is dense in X.

Problem 8 Let a function $f : X \to Y$ be given. Prove that $f : (X, 2^X) \to (Y, \mathcal{T}')$ is always continuous, as is $f : (X, \mathcal{T}) \to (Y, \{\emptyset, Y\})$, where \mathcal{T}' is any topology on Y and \mathcal{T} is any topology on X.

Solution:

We show first, that, for an arbitrary topology \mathcal{T}' on Y, the function $f : (X, 2^X) \to (Y, \mathcal{T}')$ is continuous. Suppose $O \in \mathcal{T}'$. Then $f^{-1}(O) \subseteq X$, whence $f^{-1}(O) \in 2^X$ and, therefore, $f^{-1}(O)$ is open in $(X, 2^X)$. This proves that f is continuous.

Now let \mathcal{T} be an arbitrary topology on X and consider $f : (X, \mathcal{T}) \to (Y, \{\emptyset, Y\})$. Let O be open in $(Y, \{\emptyset, Y\})$. Then $O = \emptyset$ or O = Y. therefore $f^{-1}(O) = \emptyset$ or $f^{-1}(O) = X$. In either case $f^{-1}(O) \in \mathcal{T}$, whence $f^{-1}(O)$ is open in X and f is continuous.