
HOMEWORK 6: SOLUTIONS - MATH 490
INSTRUCTOR: George Voutsadakis

Problem 1 Prove that the product of two locally connected topological spaces is locally
connected.

Solution:
Let a = (a1, a2) ∈ X1 ×X2 and consider a neighborhood N of a in X × Y. Then p1(N)

is a neighborhood of a1 in X1 and p2(N) is a neighborhood of a2 in X2. Hence, by the local
connectedness of X1, X2, there exists a connected neighborhood U1 of a1 in p1(N) and a
connected neighborhood U2 of a2 in p2(N). It is not hard to see that then U1 × U2 is a
connected neighborhood of a in N . Thus X1 × X2 is locally connected at a and, since a
was arbitrary, X1 ×X2 is locally connected. ¥

Problem 2 Verify that in a topological space X

1. if there is a path with initial point A and terminal point B, then there is a path with
initial point B and terminal point A, and

2. if there is a path connecting points A and B and a path connecting points B and C,
then there is a path connecting points A and C.

Solution:

1. Suppose that f : I → X is a path in X, such that f(0) = A and f(1) = B. Then
f ′ : I → X, defined by f ′(t) = f(1 − t) is a path in X with f ′(0) = f(1) = B and
f ′(1) = f(0) = A.

2. Suppose that f : I → X, g : I → X are paths in X with f(0) = A, f(1) = B and
g(0) = B, g(1) = C. Define h : I → X, by

h(t) =
{

f(2t), if 0 ≤ t ≤ 1
2

g(2t− 1), if 1
2 ≤ t ≤ 1

Then h is a path in X, such that h(0) = f(0) = A and h(1) = g(1) = C.

¥

Problem 3 If A and B are path-connected subsets of a topological space X and A∩B 6= ∅,
then A ∪B is path-connected.

Solution:
Let x, y ∈ A ∪ B. If both x, y ∈ A or both x, y ∈ B, then, there is a path connecting x

and y in A ∪B by the path-connectedness of A or B, respectively. So, suppose that x ∈ A
and y ∈ B (the case x ∈ B and y ∈ A may be handled similarly). Then, since A ∩ B 6= ∅,
there exists z ∈ A ∩ B. By the path-connectedness of A, there exists a path f : I → A
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such that f(0) = x and f(1) = z and, by the path-connectedness of B, there exists a path
g : I → B, such that g(0) = z and g(1) = y. Now take the path h in A ∪ B, as defined in
the previous problem. This is a path from x to y in A∪B, whence A∪B is path-connected
as was to be shown. ¥

Problem 4 Let X,Y be topological spaces and f : X → Y be a continuous function with
f(x) = y. Let g, g′ be closed paths at x ∈ X. Prove that fg ∼= fg′ whenever g ∼= g′.

Solution:
Let H : I × I → X be a homotopy from g to g′. That is,

H(s, t) =





x, if s = 0 or 1
g(s), if t = 0
g′(s), if t = 1

Define a homotopy Hf : I × I → Y from fg to fg′ as follows:

Hf (s, t) = f(H(s, t)), for all s, t ∈ I.

Then Hf (0, t) = f(H(0, t)) = f(x) = y and, similarly, Hf (1, t) = y. Also Hf (s, 0) =
f(H(s, 0)) = f(g(s)) = (fg)(s) and, similarly, Hf (s, 1) = (fg′)(s). ¥

Problem 5 Two groups G and G′ are called isomorphic if there are homomorphisms h :
G → G′ and h′ : G′ → G such that h′h is the identity mapping on G and hh′ is the identity
mapping on G′. Prove that if f : X → Y is a homeomorphism of the topological space X
with the space Y such that f(x) = y, then Π(X, x) is isomorphic to Π(Y, y).

Solution:
Let F : Π(X, x) → Π(Y, y) be defined by F ([g]) = [fg], for all [g] ∈ Π(X,x). That this

mapping is well defined, is shown by the previous problem. It is not difficult to check that
it satisfies the homomorphism property:

F ([g] · [g′]) = F ([g · g′])
= [f(g · g′)]
= [fg · fg′]
= [fg] · [fg′]
= F ([g]) · F ([g′])

Finally, F is a bijection because the mapping F−1 : Π(Y, y) → Π(X,x), defined by

F−1([h]) = [f−1h], for all [h] ∈ Π(Y, y),

is an inverse of F. We omit the details of this verification. ¥
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Problem 6 An isomorphism of a group G with itself is called an automorphism. Let f
and f ′ be paths in a space Z with f(0) = f ′(1) = z and f(1) = f ′(0) = y. Let f ′ · f−1 be the
path defined by

(f ′ · f−1)(t) =
{

f ′(2t), if 0 ≤ t ≤ 1
2

f−1(2t− 1), if 1
2 ≤ t ≤ 1

Prove that af ′af is an automorphism of Π(Z, y) such that af ′af ([g]) = [f ′ · f−1] · [g] · [f ′ ·
f−1]−1.

Solution:
We need to show that af ′af is a bijective homomorphism. ¥

Problem 7 1. Prove that the real line IR is not compact.

2. Prove that every finite subset of a topological space is compact.

Solution:

1. Consider the collection of open sets O = {On}n∈N∗ , such that On = (−n, n). Clearly,
O is an open covering of IR. This open covering has no finite subcovering. Therefore
IR is not compact.

2. Let A = {a1, . . . , an} be a finite subset of X. Consider any open covering U =
{Uα}α∈I of A. Then, since U is a covering of A, there exist α1, . . . , αn ∈ I, such that
ai ∈ Uαi , i = 1, 2, . . . , n. Therefore A = {a1, . . . , an} ⊆ ∪n

i=1Uαi and {Uα1 , . . . , Uαn} is
a finite subcovering of A by elements of U . Thus A is compact.

¥

Problem 8 Let X be a topological space. A family {Fα}α∈I of subsets of X is said to have
the finite intersection property if for each finite subset J of I, ∩α∈JFα 6= ∅. Prove that X
is compact if and only if for each family {Fα}α∈I of closed subsets of X that has the finite
intersection property, we have ∩α∈IFα 6= ∅.

Solution:
By Theorem 2.8, X is compact if and only whenever a family {Fα}α∈I of closed sets

is such that ∩α∈IFα = ∅, then there exists a finite subset of indices {α1, α2, . . . , αn}, such
that ∩n

i=1Fαi = ∅. Thus, by taking the contrapositive, X is compact if and only if for each
family {Fα}α∈I of closed subsets of X that has the finite intersection property, we have
∩α∈IFα 6= ∅. ¥
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