HOMEWORK 6: SOLUTIONS - MATH 490
INSTRUCTOR: George Voutsadakis

Problem 1 Prove that the product of two locally connected topological spaces is locally
connected.

Solution:

Let a = (a1,a2) € X7 x X9 and consider a neighborhood N of a in X x Y. Then p;(N)
is a neighborhood of a; in X; and p2(N) is a neighborhood of a2 in Xo. Hence, by the local
connectedness of X7, Xo, there exists a connected neighborhood U; of ay in p;(N) and a
connected neighborhood Uy of ay in pa(V). It is not hard to see that then U; x Uy is a
connected neighborhood of @ in N. Thus X; x X5 is locally connected at a and, since a
was arbitrary, X; x Xs is locally connected. |

Problem 2 Verify that in a topological space X

1. if there is a path with initial point A and terminal point B, then there is a path with
initial point B and terminal point A, and

2. if there is a path connecting points A and B and a path connecting points B and C,
then there is a path connecting points A and C.

Solution:

1. Suppose that f : I — X is a path in X, such that f(0) = A and f(1) =
' I — X, defined by f/(t) = f(1 —t) is a path in X with f/(0) = f(1)
f'(1) = f(0)=A.

2. Suppose that f: I — X,g: I — X are paths in X with f(0) = A, f(1) = B and
9(0) = B, g(1) = C. Define h : I — X, by
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Then h is a path in X, such that h(0) = f(0) = A and h(1) = g(1) = C.

Problem 3 If A and B are path-connected subsets of a topological space X and ANB # (),
then AU B is path-connected.

Solution:

Let x,y € AU B. If both z,y € A or both x,y € B, then, there is a path connecting x
and y in AU B by the path-connectedness of A or B, respectively. So, suppose that x € A
and y € B (the case z € B and y € A may be handled similarly). Then, since AN B # (),
there exists z € AN B. By the path-connectedness of A, there exists a path f : [ — A



such that f(0) = z and f(1) = z and, by the path-connectedness of B, there exists a path
g : I — B, such that ¢g(0) = z and ¢g(1) = y. Now take the path h in AU B, as defined in
the previous problem. This is a path from z to y in AU B, whence AU B is path-connected
as was to be shown. |

Problem 4 Let X,Y be topological spaces and f : X — Y be a continuous functz’on with
f(z) =vy. Let g, g be closed paths at x € X. Prove that fg = fg' whenever g = ¢'.

Solution:
Let H : I x I — X be a homotopy from g to ¢’. That is,

T, ifs=0orl
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Define a homotopy Hy : I x I — Y from fg to fg’ as follows:
Hy(s,t) = f(H(s,t)), foralls,tel.

Then H¢(0,t) = f(H(0,t)) = f(z) = y and, similarly, H¢(1,t) = y. Also Hf(s,0) =
f(H(s,0)) = f(g(s)) = (f9)(s) and, similarly, Hf(s,1) = (fg')(s)- u

Problem 5 Two groups G and G’ are called isomorphic if there are homomorphisms h :
G — G and I : G' — G such that h'h is the identity mapping on G and hh' is the identity
mapping on G'. Prove that if f : X — Y is a homeomorphism of the topological space X
with the space Y such that f(x) =y, then II(X, x) is isomorphic to II(Y,y).

Solution:

Let F : II(X,z) — II(Y, y) be defined by F([g]) = [fg], for all [g] € II(X,z). That this
mapping is well defined, is shown by the previous problem. It is not difficult to check that
it satisfies the homomorphism property:

F(lgl-lg') = F((
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Finally, F is a bijection because the mapping F~! : TI(Y,y) — II(X, z), defined by
F=Y([n) = [f7'A], for all [] € TI(Y. y),

is an inverse of F. We omit the details of this verification. [ |



Problem 6 An isomorphism of a group G with itself is called an automorphism. Let f
and f' be paths in a space Z with f(0) = f'(1) = z and f(1) = f'(0) = y. Let f'- f~' be the

path defined by
ey _ 20, ifo<t<l}
(o )(t)—{ Fet=1), ify<t<i
Prove that agay is an automorphism of I(Z,y) such that apag(lg]) = [f"- f~'] - [g] - [/
f_l]_l-
Solution:

We need to show that ayay is a bijective homomorphism. |

Problem 7 1. Prove that the real line IR is not compact.

2. Prove that every finite subset of a topological space is compact.
Solution:

1. Consider the collection of open sets O = {Oy, },en*, such that O,, = (—n,n). Clearly,
O is an open covering of IR. This open covering has no finite subcovering. Therefore
IR is not compact.

2. Let A = {ai1,...,a,} be a finite subset of X. Consider any open covering U =
{Uq}aer of A. Then, since U is a covering of A, there exist aq,...,a, € I, such that
a; € Uy,, 1 =1,2,...,n. Therefore A = {ay,...,an} C U Uy, and {Uy,,..., Uy, } is
a finite subcovering of A by elements of ¢. Thus A is compact.

Problem 8 Let X be a topological space. A family {Fy}acr of subsets of X is said to have
the finite intersection property if for each finite subset J of I, NacjFa # 0. Prove that X
is compact if and only if for each family {Fy}acr of closed subsets of X that has the finite
intersection property, we have NaerFu # 0.

Solution:
By Theorem 2.8, X is compact if and only whenever a family {F, }qer of closed sets
is such that NyerFy = 0, then there exists a finite subset of indices {aq, s, ..., a,}, such

that N, F,, = (0. Thus, by taking the contrapositive, X is compact if and only if for each
family {F,}aer of closed subsets of X that has the finite intersection property, we have
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