HOMEWORK 6: SOLUTIONS - MATH 490 INSTRUCTOR: George Voutsadakis

Problem 1 Prove that the product of two locally connected topological spaces is locally connected.

Solution:

Let $a = (a_1, a_2) \in X_1 \times X_2$ and consider a neighborhood N of a in $X \times Y$. Then $p_1(N)$ is a neighborhood of a_1 in X_1 and $p_2(N)$ is a neighborhood of a_2 in X_2 . Hence, by the local connectedness of X_1, X_2 , there exists a connected neighborhood U_1 of a_1 in $p_1(N)$ and a connected neighborhood U_2 of a_2 in $p_2(N)$. It is not hard to see that then $U_1 \times U_2$ is a connected neighborhood of a in N. Thus $X_1 \times X_2$ is locally connected at a and, since a was arbitrary, $X_1 \times X_2$ is locally connected.

Problem 2 Verify that in a topological space X

- 1. if there is a path with initial point A and terminal point B, then there is a path with initial point B and terminal point A, and
- 2. if there is a path connecting points A and B and a path connecting points B and C, then there is a path connecting points A and C.

Solution:

- 1. Suppose that $f: I \to X$ is a path in X, such that f(0) = A and f(1) = B. Then $f': I \to X$, defined by f'(t) = f(1-t) is a path in X with f'(0) = f(1) = B and f'(1) = f(0) = A.
- 2. Suppose that $f: I \to X, g: I \to X$ are paths in X with f(0) = A, f(1) = B and g(0) = B, g(1) = C. Define $h: I \to X$, by

$$h(t) = \begin{cases} f(2t), & \text{if } 0 \le t \le \frac{1}{2} \\ g(2t-1), & \text{if } \frac{1}{2} \le t \le 1 \end{cases}$$

Then h is a path in X, such that h(0) = f(0) = A and h(1) = g(1) = C.

Problem 3 If A and B are path-connected subsets of a topological space X and $A \cap B \neq \emptyset$, then $A \cup B$ is path-connected.

Solution:

Let $x, y \in A \cup B$. If both $x, y \in A$ or both $x, y \in B$, then, there is a path connecting xand y in $A \cup B$ by the path-connectedness of A or B, respectively. So, suppose that $x \in A$ and $y \in B$ (the case $x \in B$ and $y \in A$ may be handled similarly). Then, since $A \cap B \neq \emptyset$, there exists $z \in A \cap B$. By the path-connectedness of A, there exists a path $f : I \to A$ such that f(0) = x and f(1) = z and, by the path-connectedness of B, there exists a path $g: I \to B$, such that g(0) = z and g(1) = y. Now take the path h in $A \cup B$, as defined in the previous problem. This is a path from x to y in $A \cup B$, whence $A \cup B$ is path-connected as was to be shown.

Problem 4 Let X, Y be topological spaces and $f : X \to Y$ be a continuous function with f(x) = y. Let g, g' be closed paths at $x \in X$. Prove that $fg \cong fg'$ whenever $g \cong g'$.

Solution:

Let $H: I \times I \to X$ be a homotopy from g to g'. That is,

$$H(s,t) = \begin{cases} x, & \text{if } s = 0 \text{ or } 1\\ g(s), & \text{if } t = 0\\ g'(s), & \text{if } t = 1 \end{cases}$$

Define a homotopy $H_f: I \times I \to Y$ from fg to fg' as follows:

$$H_f(s,t) = f(H(s,t)), \text{ for all } s, t \in I.$$

Then $H_f(0,t) = f(H(0,t)) = f(x) = y$ and, similarly, $H_f(1,t) = y$. Also $H_f(s,0) = f(H(s,0)) = f(g(s)) = (fg)(s)$ and, similarly, $H_f(s,1) = (fg')(s)$.

Problem 5 Two groups G and G' are called isomorphic if there are homomorphisms $h : G \to G'$ and $h' : G' \to G$ such that h'h is the identity mapping on G and hh' is the identity mapping on G'. Prove that if $f : X \to Y$ is a homeomorphism of the topological space X with the space Y such that f(x) = y, then $\Pi(X, x)$ is isomorphic to $\Pi(Y, y)$.

Solution:

Let $F : \Pi(X, x) \to \Pi(Y, y)$ be defined by F([g]) = [fg], for all $[g] \in \Pi(X, x)$. That this mapping is well defined, is shown by the previous problem. It is not difficult to check that it satisfies the homomorphism property:

$$\begin{array}{rcl} F([g] \cdot [g']) &=& F([g \cdot g']) \\ &=& [f(g \cdot g')] \\ &=& [fg \cdot fg'] \\ &=& [fg] \cdot [fg'] \\ &=& F([g]) \cdot F([g']) \end{array}$$

Finally, F is a bijection because the mapping $F^{-1}: \Pi(Y, y) \to \Pi(X, x)$, defined by

$$F^{-1}([h]) = [f^{-1}h], \text{ for all } [h] \in \Pi(Y, y),$$

is an inverse of F. We omit the details of this verification.

Problem 6 An isomorphism of a group G with itself is called an automorphism. Let f and f' be paths in a space Z with f(0) = f'(1) = z and f(1) = f'(0) = y. Let $f' \cdot f^{-1}$ be the path defined by

$$(f' \cdot f^{-1})(t) = \begin{cases} f'(2t), & \text{if } 0 \le t \le \frac{1}{2} \\ f^{-1}(2t-1), & \text{if } \frac{1}{2} \le t \le 1 \end{cases}$$

Prove that $a_{f'}a_f$ is an automorphism of $\Pi(Z, y)$ such that $a_{f'}a_f([g]) = [f' \cdot f^{-1}] \cdot [g] \cdot [f' \cdot f^{-1}]^{-1}$.

Solution:

We need to show that $a_{f'}a_f$ is a bijective homomorphism.

Problem 7 1. Prove that the real line IR is not compact.

2. Prove that every finite subset of a topological space is compact.

Solution:

- 1. Consider the collection of open sets $\mathcal{O} = \{O_n\}_{n \in \mathbb{N}^*}$, such that $O_n = (-n, n)$. Clearly, \mathcal{O} is an open covering of \mathbb{R} . This open covering has no finite subcovering. Therefore \mathbb{R} is not compact.
- 2. Let $A = \{a_1, \ldots, a_n\}$ be a finite subset of X. Consider any open covering $\mathcal{U} = \{U_{\alpha}\}_{\alpha \in I}$ of A. Then, since \mathcal{U} is a covering of A, there exist $\alpha_1, \ldots, \alpha_n \in I$, such that $a_i \in U_{\alpha_i}, i = 1, 2, \ldots, n$. Therefore $A = \{a_1, \ldots, a_n\} \subseteq \bigcup_{i=1}^n U_{\alpha_i}$ and $\{U_{\alpha_1}, \ldots, U_{\alpha_n}\}$ is a finite subcovering of A by elements of \mathcal{U} . Thus A is compact.

Problem 8 Let X be a topological space. A family $\{F_{\alpha}\}_{\alpha \in I}$ of subsets of X is said to have the finite intersection property if for each finite subset J of I, $\bigcap_{\alpha \in J} F_{\alpha} \neq \emptyset$. Prove that X is compact if and only if for each family $\{F_{\alpha}\}_{\alpha \in I}$ of closed subsets of X that has the finite intersection property, we have $\bigcap_{\alpha \in I} F_{\alpha} \neq \emptyset$.

Solution:

By Theorem 2.8, X is compact if and only whenever a family $\{F_{\alpha}\}_{\alpha \in I}$ of closed sets is such that $\bigcap_{\alpha \in I} F_{\alpha} = \emptyset$, then there exists a finite subset of indices $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$, such that $\bigcap_{i=1}^n F_{\alpha_i} = \emptyset$. Thus, by taking the contrapositive, X is compact if and only if for each family $\{F_{\alpha}\}_{\alpha \in I}$ of closed subsets of X that has the finite intersection property, we have $\bigcap_{\alpha \in I} F_{\alpha} \neq \emptyset$.