HOMEWORK 7 - MATH 112 DUE DATE: Monday, March 28

INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. One part of each problem will be chosen at random and graded. Each question is worth 1 point. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

- 1. Find the following integrals using the general power rule for integration:
 - (a) $\int \frac{4x+6}{(x^2+3x+7)^3} dx$

(b)
$$\int x^2 \sqrt{3 - x^3} dx$$

- 2. Find the following integrals using formal substitution:
 - (a) $\int x^3 (1-x^4)^2 dx$ (b) $\int \frac{x^2+1}{\sqrt{2}} dx$

(b)
$$\int \frac{x^2+1}{\sqrt{x^3+3x+4}} dx$$

- 3. Use the Exponential Rule or the Logarithmic Rule to find the integrals:
 - (a) $\int (2x+1)e^{x^2+x}dx$
 - (b) $\int 3(x-4)e^{x^2-8x}dx$
 - (c) $\int \frac{x^2}{x^3+1} dx$
 - (d) $\int \frac{1}{r \ln x} dx$
- 4. Find the equation of the function f(x), whose derivative is equal to $f'(x) = \frac{x^3 4x^2 + 3}{x 3}$ and is such that f(4) = -1.
- 5. Sketch the region whose area is represented by the definite integral. Then use a geometric formula to evaluate the integral:

(a)
$$\int_{0}^{4} 3x dx$$

(b) $\int_{-3}^{3} \sqrt{9 - x^{2}} dx$

- 6. Find the area of the region that is bounded by the graph of the function $f(x) = \frac{2x^2+8}{x}$, the x-axis and the lines x = 1 and x = 3.
- 7. Evaluate the definite integrals:

(a)
$$\int_{0}^{2} \frac{x}{\sqrt{1+2x^{2}}} dx$$

(b) $\int_{0}^{1} \frac{e^{-x}}{\sqrt{e^{-x}+1}} dx$
(c) $\int_{0}^{1} \frac{e^{2x}}{e^{2x}+1} dx$

- 8. Sketch the region bounded by the graphs of the functions and find the area of the region:
 - (a) $y = 4 x^2, y = x^2$
 - (b) $y = xe^{-x^2}, y = -1, x = 0, x = 1$
 - (c) $y = \frac{1}{x}, y = -e^{-x}, x = \frac{1}{2}, x = 1$