HOMEWORK 7 - MATH 112

DUE DATE: Monday, March 28

INSTRUCTOR: George Voutsadakis
Read each problem very carefully before starting to solve it. One part of each problem will be chosen at random and graded. Each question is worth 1 point. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

1. Find the following integrals using the general power rule for integration:
(a) $\int \frac{4 x+6}{\left(x^{2}+3 x+7\right)^{3}} d x$
(b) $\int x^{2} \sqrt{3-x^{3}} d x$
2. Find the following integrals using formal substitution:
(a) $\int x^{3}\left(1-x^{4}\right)^{2} d x$
(b) $\int \frac{x^{2}+1}{\sqrt{x^{3}+3 x+4}} d x$
3. Use the Exponential Rule or the Logarithmic Rule to find the integrals:
(a) $\int(2 x+1) e^{x^{2}+x} d x$
(b) $\int 3(x-4) e^{x^{2}-8 x} d x$
(c) $\int \frac{x^{2}}{x^{3}+1} d x$
(d) $\int \frac{1}{x \ln x} d x$
4. Find the equation of the function $f(x)$, whose derivative is equal to $f^{\prime}(x)=\frac{x^{3}-4 x^{2}+3}{x-3}$ and is such that $f(4)=-1$.
5. Sketch the region whose area is represented by the definite integral. Then use a geometric formula to evaluate the integral:
(a) $\int_{0}^{4} 3 x d x$
(b) $\int_{-3}^{3} \sqrt{9-x^{2}} d x$
6. Find the area of the region that is bounded by the graph of the function $f(x)=\frac{2 x^{2}+8}{x}$, the x-axis and the lines $x=1$ and $x=3$.
7. Evaluate the definite integrals:
(a) $\int_{0}^{2} \frac{x}{\sqrt{1+2 x^{2}}} d x$
(b) $\int_{0}^{1} \frac{e^{-x}}{\sqrt{e^{-x}+1}} d x$
(c) $\int_{0}^{1} \frac{e^{2 x}}{e^{2 x}+1} d x$
8. Sketch the region bounded by the graphs of the functions and find the area of the region:
(a) $y=4-x^{2}, y=x^{2}$
(b) $y=x e^{-x^{2}}, y=-1, x=0, x=1$
(c) $y=\frac{1}{x}, y=-e^{-x}, x=\frac{1}{2}, x=1$
