TEST 8 - MATH 140

DATE: Friday, March 10

INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. Each question is worth 5 points. It is necessary to show your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

- 1. (a) Convert $\frac{4\pi}{5}$ radians to degrees. (1 point)
 - (b) Convert 195° to radians. (1 point)
 - (c) If the radius of a circle is 3 meters, find the length of the arc of the circle and the area of the sector subtended by the central angle $\theta = 120^{\circ}$. (1 point)
 - (d) The radius of each wheel of a car is 15 inches. If the wheels are turning at the rate of 3 revolutions per second, how fast is the car moving? (You may express your answer in whichever units you prefer.) (2 points)
- 2. Copy the following table and, then, fill-in the appropriate values (5 points). All given angles are in radians.

$$\begin{array}{c|cc} \theta & \frac{7\pi}{4} & \frac{5\pi}{6} & \frac{4\pi}{3} \\ \hline \sin\theta \\ \cos\theta \end{array}$$

- 3. Suppose that the point (7, -3) is on the terminal side of the angle θ that is placed in standard position.
 - (a) Find $\sin \theta$ and $\cos \theta$. (3 points)
 - (b) Find $\tan \theta$ and $\cot \theta$. (1 point)
 - (c) Find $\sec \theta$ and $\csc \theta$. (1 point)
- 4. Suppose that $\cos \theta = \frac{4}{5}$ and that $\frac{3\pi}{2} < \theta < 2\pi$.
 - (a) Find $\sin \theta$. (2 points)
 - (b) Find $\tan \theta$ and $\cot \theta$. (1 point)
 - (c) Find $\sec \theta$ and $\csc \theta$. (1 point)
 - (d) Find $\sin(\pi + \theta)$. (1 point)
- 5. (a) Give me formally (as done in class) the domain Dom(f) of $f(\theta) = \cot \theta$. (2 points)
 - (b) Write down the three Pythagorean identities. (2 points)
 - (c) Find the exact value of the expression

$$\sin 1^{\circ} + \sin 2^{\circ} + \sin 3^{\circ} + \ldots + \sin 357^{\circ} + \sin 358^{\circ} + \sin 359^{\circ}$$

(1 point).