EXAM 2 - MATH 151

DATE: Tuesday, February 20

INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. Each question is worth 5 points. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

- 1. (a) Give the definition of the derivative f'(a) of a function y = f(x) at the point x = a. (1 point)
 - (b) Use the **limit definition** of the derivative to compute the derivative f'(a) if $f(x) = \frac{x^2+1}{x-2}$. (4 points)
- 2. (a) Find an equation of the tangent line to the curve y = (1+x) cos x at x = 0. (2 points)
 (b) Find f''(1) if f(x) = x²/(1+x). (3 points)
- 3. Compute the derivatives of the following functions:
 - (a) $f(x) = \sec^2 x + \tan^2 x$ (2 point)
 - (b) $f(x) = \sqrt{\cos(\sin^2 x)}$ (3 points)
- 4. (a) Find an equation of the tangent line to the graph of $y = (1 + 2x)^{10}$ at x = 0. (3 points)
 - (b) If $h(x) = \sqrt{4 + 3f(x)}$, where f(1) = 7 and f'(1) = 4, find h'(1). (2 points)
- 5. (a) Find $\frac{dy}{dx}$ if $x^2y^2 + x \sin y = 4$. (2 points)
 - (b) Find an equation of the tangent line to the curve $y^2(y^2-4) = x^2(x^2-5)$ at the point (0, -2). (3 points)
- 6. A lighthouse is located on a small island 3 km away from the nearest point P on a straight shoreline and its light makes four revolutions per minute. How fast is the beam of the light moving along the shoreline when it is 1 km from P?
 - (a) Set your variables and find an equation that relates the variables that you chose. (2 points)
 - (b) Differentiate the equation to solve the problem. (3 points)