PRACTICE EXAM 2 - MATH 151

DATE: Tuesday, February 20

INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. Each question is worth 5 points. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

- 1. Use the **limit definition** of the derivative to compute the derivative of the function $f(x) = \frac{1}{x-5}$ at x = 3. (5 points)
- 2. Compute the following derivatives:
 - (a) $f(x) = (3x+7)^4 \cdot \sqrt{5x^2 3}$ (2 points)
 - (b) $g(x) = \frac{\cos x}{x^3 2x + 5}$ (2 points)
 - (c) Find the equation of the tangent line to the graph of $f(x) = \frac{1}{1+x^2}$ at the point $(-1, \frac{1}{2})$. (1 point)
- 3. Compute the following derivatives:
 - (a) $f(x) = \sqrt{1 + \tan^2 x}$ (2 points)
 - (b) $g(x) = x^3 \cos^2(5x)$ (2 points)
 - (c) $h(x) = (\frac{x^2}{x-1})^7$ (1 point)
- 4. (a) Find $\frac{dy}{dx}$ if $y^5 + x^2y^3 = 1 + x^4y$. (2 points)
 - (b) Find an equation for the tangent line to the graph of $x^2 + 2xy y^2 + x = 2$ at the point (1, 2). (3 points)
- 5. A kite 100 feet above the ground moves horizontally at a speed of 8 feet per second. At what rate is the angle between the string and the horizontal decreasing when 200 feet of string has been let out?
 - (a) Denote by θ the angle between the string and the horizontal, by x the horizontal distance from the kite to the vertical at the beginning of the string. Write an equation relating θ and x. (2 points)
 - (b) Implicitly differentiate both sides of the equation with respect to time and solve for $\frac{d\theta}{dt}$. (2 points)
 - (c) Answer the question posed by the problem. (1 point)
- 6. A 13-ft ladder is leaning against a wall. If the top of the ladder slips down the wall at a rate of 2 ft/sec, how fast will the foot be moving away from the wall when the top is 5 feet above the ground?
 - (a) Denote by h the distance of the top of the ladder from the ground and by x the distance of the foot of the ladder from the wall. Write an equation relating h and x. (2 points)
 - (b) Implicitly differentiate both sides of the equation with respect to time and solve for $\frac{dx}{dt}$. (2 points)
 - (c) Answer the question posed by the problem. (1 point)