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In mathematics, a transform changes one image to another through some process such as 

rotation, reflection, translation, or dilations.  In Fourier transforms, a function f(t) that may consist of 

many parts that are continuous or discrete, is transformed to be represented by a single expression.  

Fourier transforms have many real world applications such as the chemistry application in spectroscopy. 

In spectroscopy, f(t) is taken from the intensity of the light beam at the output point and this function is 

a function of optical path difference.2  This equation represents an ideal situation which is not practical 

for lab experiments so a more realistic equation is needed to properly interpret the data.  In the process 

of nuclear magnetic resonance spectroscopy, the rotation of a molecule’s spin around a magnetic field is 

being recorded.  The function f(t) is formed from  interpreting the time at which it takes the spin to 

return to rest forming a sinusoidal graph.  Through Fourier transform, it takes this function f(t) and 

produces the spectrum.  In spectroscopy, it must be taken into account that because the bounds are not 

infinite, a function f(δ) must be consider where T is an upper limit2.  

𝑓 𝛿 =   
1 𝑖𝑓 0 ≤  𝛿 ≤ 𝑇

0 𝑖𝑓 𝛿 > 𝑇
  

Taking this discrete interpretation of a continuous Fourier Transform can produce a spectrum with real 

world applications.  In spectroscopy, the data goes from time to frequency.  This is done by introducing a 

wave number which can be used to take the time a process takes to show the frequency of a certain 

occurrence in the data.   

 The Fourier Transform equation can be represented in different ways, the interpretation 

remains the same, the only difference comes from the fact that the inverse transform equation must be 

changed to fit with the original equation1.  The Fourier Transform is indicated by F(ω). 

1) 𝐹 𝜔 =   𝑓 𝑡 𝑒−𝑖𝜔𝑡∞

−∞
𝑑𝑡 



 

This equation is how the Fourier Transform is found when f(t) is given which is often the case in real 

world applications. Inversely, if F(ω) is given, we can use the inverse transform to solve for f(t)1. 

2) 𝑓 𝑡 =  
1

2𝜋
 𝐹 𝜔 𝑒𝑖𝜔𝑡 𝑑𝜔

∞

−∞
 

Proof of Inverse Transform: 

First, the identity given must be proven as well as an important form of the identity. 

 𝛿 𝑡 𝜙 𝑡 𝑑𝑡 =  𝜙(0)

∞

−∞

 

𝐹 𝜔 =   𝛿 𝑡 

∞

−∞

𝑒−𝑖𝜔𝑡 𝑑𝑡 

= 𝑒−𝑖𝜔 (0) 

= 𝑒0 

𝐹 𝜔 = 1 

The proof of this inversion formula uses the following Identity equations (Equations 3 and 4)1. 

3) 𝛿 𝑡 =  
1

2𝜋
 𝑒𝑖𝜔𝑡 𝑑𝜔

∞

−∞
 

4) 𝜙 𝑡 =   𝜙 𝑥 𝛿 𝑡 − 𝑥 𝑑𝑥
∞

−∞
 

Using equation 1, a substitution for F(ω) is made and also replacing t with x to obtain equation 5. 

5) 
1

2𝜋
 𝐹 𝜔 𝑒𝑖𝜔𝑡 𝑑𝜔 =  

1

2𝜋
   𝑓(𝑥)𝑒−𝑖𝜔𝑥 𝑑𝑥

∞

−∞
 

∞

−∞

∞

−∞
𝑒𝑖𝜔𝑡 𝑑𝜔 

Separating the integrals into two different parts matching the integration parts of dx and dω 

equation 6 is formed. 



 

6) =  
1

2𝜋
 𝑓 𝑥 𝑑𝑥  𝑒𝑖𝜔 (𝑡−𝑥)𝑑𝜔

∞

−∞

∞

−∞
 

Using substitution for u = (t-x) and using the identity in equation 3, equation 7 is formed. 

7) =   𝑓 𝑥 𝛿 𝑡 − 𝑥 𝑑𝑥
∞

−∞
 

By the identity (equation  4), we have the final equation equal to f(t) which was our desired result and 

thus shows the proof of the inversion formula. 

 Fourier Transforms are a group of complex equations that are often times difficult to prove.  

There are several properties which are used to help simplify some of the more difficult tasks of proving 

the validity of transforms.  In these formulas, the use of a special format to show the Fourier integral 

and its inverse. This format is g(t) ↔ G(ω). The first of these simple theorems is the Linearity Theorem 

(Equation 8)1. 

8) 𝑎1𝑓1 𝑡 + 𝑎2𝑓2 𝑡 ↔  𝑎1𝐹1(𝜔) +  𝑎2𝐹2(𝜔) 

The proof of this theorem is shown by inserting the f(t) of equation 8 into equation 1 (equation 9). 

9) 𝐺 𝜔 =   (𝑎1𝑓1(𝑡) + 𝑎2𝑓2(𝑡) )𝑒−𝑖𝜔𝑡 𝑑𝑡
∞

−∞
 

Using distribution for the integral and the exponential, equation 10 is formed. 

10) 𝐺(𝜔) =   𝑎1𝑓1(𝑡)𝑒−𝑖𝜔𝑡 𝑑𝑡 +   𝑎2𝑓2(𝑡)𝑒−𝑖𝜔𝑡 𝑑𝑡
∞

−∞

∞

−∞
 

To form equation 11, the constants can be pulled out in front of the integral because they will not be 

affected by integration limits. 

11)  𝐺 𝜔 = 𝑎1  𝑓1 𝑡 𝑒
−𝑖𝜔𝑡 𝑑𝑡 +  𝑎2  𝑓2(𝑡)𝑒−𝑖𝜔𝑡 𝑑𝑡

∞

−∞

∞

−∞
 

It can now be clearly seen that each part of the equation resembles equation 1 with the addition of 

a constant out in front.  Substitution can be used to insert F1(ω) and F2(ω) to form equation 12. 



 

12) 𝐺 𝜔 =  𝑎1𝐹1(𝜔) + 𝑎2𝐹2(𝜔) 

Equation 12 is our desired result and completes the proof of the linearity theorem.  The next 

theorem is the Symmetry theorem which states that if f(t) ↔ F(ω), then F(t) ↔ 2πf(-ω)1. 

The proof of this theorem starts with using substitution to insert 2πf(-ω) into equation 2 to form 

equation 13. 

13) 𝑔 𝑡 =  
1

2𝜋
 2𝜋𝑓(−𝜔)𝑒𝑖𝜔𝑡 𝑑𝜔

∞

−∞
 

Equation 14 is formed by simply pulling out the constant 2π which ends up cancelling out with the 

1/2π. 

14) 𝑔 𝑡 =   𝑓(−𝑤)𝑒𝑖𝜔𝑡 𝑑𝜔
∞

−∞
 

The next step in this proof uses u substitution where u = -ω (Equation 15). 

15) 𝑔 𝑡 =  − 𝑓(𝑢)𝑒−𝑖𝑢𝑡 𝑑𝑢
−∞

∞
 

To form equation 16, the integration limits are swapped which also removes the negative. 

16) 𝑔 𝑡 =   𝑓(𝑢)𝑒−𝑖𝑢𝑡 𝑑𝑢
∞

−∞
 

17) g(t) = F(t) 

Equation 17 is formed from the use of equation 1 which concludes with our desired result and thus 

completing the proof of the symmetry theorem1. 

The next simple theorem is the time scaling theorem which states the formula in equation 18. 

18) 𝑓 𝑎𝑡 ↔  
1

|𝑎 |
𝐹(

𝜔

𝑎
)       for real values of a 

For a > 0 and inserting f(at) into equation 1 then equation 19 is created. 



 

19) 𝐺 𝜔 =   𝑓(𝑎𝑡)𝑒−𝑖𝜔𝑡 𝑑𝑡
∞

−∞
 

Using substitution for x = at the equation changes to equation 20. 

20) 𝐺 𝜔 =  
1

𝑎
 𝑓(𝑥)𝑒−𝑖 𝜔 𝑎  𝑥𝑑𝑥

∞

−∞
 

Using the formula from equation 1 we can substitute to get the result found in equation 21. 

21) 𝐺 𝜔 =  
1

𝑎
𝐹(

𝜔

𝑎
) 

This is our desired result and thus completes the proof of the time scaling formula.  The next 

formula (equation 22) is the time shifting theorem1. 

22) 𝑓 𝑡 −  𝑡0 ↔ 𝐹(𝜔)𝑒−𝑖𝑡0𝜔  

The proof of the time shifting theorem starts by substituting into equation 1 which results in 

equation 23. 

23) 𝐺 𝜔 =   𝑓(𝑡 − 𝑡0)𝑒−𝑖𝜔𝑡 𝑑𝑡
∞

−∞
 

Substituting in for x = t – t0 where t = x + t0 equation 24 results. 

24) 𝐺 𝜔 =   𝑓(𝑥)𝑒−𝑖𝜔 (𝑡0+𝑥)𝑑𝑥
∞

−∞
 

To form equation 25, the constants are removed from the integral. 

25) 𝐺 𝜔 =  𝑒−𝑖𝜔𝑡0  𝑓(𝑥)𝑒−𝑖𝜔𝑥 𝑑𝑥
∞

−∞
 

Using equation 1, F(ω) is substituted in and equation 26 results. 

26) 𝐺 𝜔 =  𝐹(𝜔)𝑒−𝑖𝜔𝑡0  



 

This is our desired result thus the time shifting theorem has been proved.  The next simple theorem 

is the frequency shifting theorem for which ω0 is real (equation27). 

27) 𝑒𝑖𝜔𝑡0𝑓(𝑡) ↔ 𝐹(𝜔 − 𝜔0) 

Inserting this into equation 1 we get equation 28. 

28) 𝐺 𝜔 =  𝑓(𝑡)𝑒𝑖𝜔0𝑡𝑒−𝑖𝜔𝑡 𝑑𝑡
∞

−∞
 

Equation 29 results from the combining of like terms in equation 28. 

29) 𝐺 𝜔 =  𝑓(𝑡)𝑒−𝑖 𝜔−𝜔0 𝑡𝑑𝑡
∞

−∞
 

Using equation 1 the resulting formula is found (equation 30). 

30) 𝐺 𝜔 =  𝐹(𝜔 − 𝜔0)  

This is our desired resulting formula and therefore the frequency shifting theorem has been proven.  

Another simple theorem used is the time differentiation theorem (equation 31)1. 

31) 
𝑑𝑛𝑓

𝑑𝑡 𝑛 ↔  𝑖𝜔 𝑛𝐹(𝜔) 

The proof of equation 31 can be done using induction in which equation 32 shows the basic case. 

32) 𝑛 = 0  𝑓 𝑡 ↔ 𝐹 𝜔  

33) 𝑛 = 1  𝑓 ′ 𝑡 ↔  𝑖𝜔 𝐹(𝜔) 

Proof of equation 33 starts by using equation 1. 

34)  𝑓 ′(𝑡)𝑒−𝑖𝜔𝑡 𝑑𝑡
∞

−∞
 

Using integration by parts we obtain equation 35. 



 

35) 𝑓 𝑡 𝑒−𝑖𝜔𝑡 |−∞
∞ −   𝑓 𝑡 (−𝑖𝜔)𝑒−𝑖𝜔𝑡 𝑑𝑡

∞

−∞
 

The first term goes to 0 which leaves us with equation 36. 

36) 𝑖𝜔  𝑓(𝑡)𝑒−𝑖𝜔𝑡 𝑑𝑡
∞

−∞
 

Using equation 1 we end up with the result in equation 33 as desired.   The next step is to show true 

for n+1 so that by induction we can prove this theorem1. 

37) 𝐺 𝜔 =   
𝑑𝑛 +1𝑓

𝑑𝑡 𝑛 +1 𝑒−𝑖𝜔𝑡 𝑑𝑡
∞

−∞
 

The next step is to separate the differentials to simplify the process.  Equation 38 is the result of this 

separation. 

38) =  
𝑑

𝑑𝑡
 
𝑑𝑛𝑓

𝑑𝑡 𝑛  
∞

−∞
𝑒−𝑖𝜔𝑡 𝑑𝑡 

Using integration by parts we end up with equation 39. 

39) =
𝑑𝑛𝑓

𝑑𝑡 𝑛 𝑒−𝑖𝜔𝑡 |−∞
∞ −   −𝑖𝜔 

𝑑𝑛𝑓

𝑑𝑡 𝑛 𝑒−𝑖𝜔𝑡∞

−∞
𝑑𝑡 

We can assume that the first part of the equation goes to 0 and we can pull out the 

constants that are inside the integral.  By equations 31 and 36 as well as the constants, we 

can obtain equation 40. 

40) =  𝑖𝜔  𝑖𝜔 𝑛𝐹(𝜔) 

By combining like terms we end up with equation 41 which is our desired result. 

=  𝑖𝜔 𝑛+1𝐹(𝜔) 



 

The next simple theorem is the frequency differentiation which is stated in equation 41. 

41)  −𝑖𝑡 𝑛𝑓 𝑡 ↔
𝑑𝑛𝐹(𝜔)

𝑑𝜔 𝑛  

The proof of this can be started using our symmetry theorem (if f(t) ↔ F(ω), then F(t) ↔ 2πf(-

ω) which when used results in equation 42. 

42) 
𝑑𝑛𝐹(𝑡)

𝑑𝑡 𝑛 ↔ 2𝜋 −𝑖𝑡 𝑛𝑓(−𝜔) 

To obtain equation 43 we use substitution in the inversion formula. 

43) 𝐺(𝑡) =   −𝑖𝑡 𝑛𝑓(−𝜔)𝑒𝑖𝜔𝑡 𝑑𝜔
∞

−∞
 

Using substitution where u=-ω we obtain equation 44. 

44) =   −𝑖𝑡 𝑛𝑓(𝑢)𝑒−𝑖𝑢𝑡 𝑑𝑢
∞

−∞
 

From equation 41 and taking out the constants we obtain equation 45 which is our desired result. 

45) =
𝑑𝑛𝐹(𝑡)

𝑑𝑡𝑛
 

Another simple theorem used is the conjugate function theorem which states the formula found in 

equation 46. 

46) 𝑓  𝑡 ↔ 𝐹  −𝜔  

47) 𝐺 𝜔 =    𝑓1 + 𝑖𝑓2 𝑒
−𝑖𝜔𝑡 𝑑𝑡

∞

−∞
 

48) 𝐺  𝜔 =  (𝑓1 − 𝑖𝑓2)𝑒𝑖𝜔𝑡 𝑑𝑡
∞

−∞
 

From equations 38 and 39 we have the resulting equation 40. 

49) 𝐺  −𝜔 =   (𝑓1 − 𝑖𝑓2)𝑒−𝑖𝜔𝑡 𝑑𝑡
∞

−∞
 



 

By the definition of conjugates and using equation 1 we get the final result (equation 41). 

50) 𝐺  −𝜔 =   𝑓 (𝑡)𝑒−𝑖𝜔𝑡 𝑑𝑡
∞

−∞
 

This is our desired result and thus ends the proof of the conjugate function theorem.  The last 

simple theorem used is the moment theorem which states equation 51 and mn is equal to equation 

521.  

51) (−𝑖)𝑛𝑚𝑛 =  
𝑑𝑛𝐹(0)

𝑑𝜔 𝑛  

52)  𝑡𝑛∞

−∞
𝑓 𝑡 𝑑𝑡    𝑛 = 0,1,2, … 

We start with the base case where n = 0 and ω = 0 (equation 44). 

53) 𝑚0 = 𝐹(0) 

Using the MacLaurin Series we obtain equation 54. 

54) 𝐺 𝜔 =   𝑓(𝑡)   
(−𝑖𝜔𝑡 )𝑛

𝑛!
∞
𝑛=0  

∞

−∞
𝑑𝑡 

Using equation 52 we obtain equation 55. 

55) 𝐺 𝜔 =   −𝑖 𝑛𝑚𝑛
𝜔𝑛

𝑛!
∞
𝑛=0  

By the Taylor Series we obtain equation 56. 

56) 𝐺 𝜔 =  
𝑑𝑛𝐹(0)

𝑑𝜔 𝑛

𝜔𝑛

𝑛!
∞
𝑛=0  

This concludes in our desired result which ends the proof of the moment theorem. 

 

 



 

Examples 

There are several uses for the previously discussed simple theorems.  We will use a few examples to 

show some of these uses on important functions.  Example 1 is involving the function pT(t). This 

function is show in graph 11. 

 

To apply this to Fourier Transforms we must first make the statement found in equation 57 which is 

what we intend to prove. 

57) 𝑝𝑇(𝑡 − 𝑡0) ↔
2sin 𝜔𝑇

𝜔
𝑒−𝑖𝜔𝑡0  

It is easier to start by proving equation 58. 

58) 𝑔 𝑡 =  𝑝𝑇 𝑡  

We must first insert this formula into equation 1 t solve for G(ω).  The next step is to realize that this 

function only exists as something other than 0 between –T and T so we are able to change our 

integration limits.  Also, this function is equal to 1 throughout these limits which results in the right 

half of equation 59. 

59)  𝑝𝑇(𝑡)𝑒−𝑖𝜔𝑡 𝑑𝑡 =  𝑒−𝑖𝜔𝑡 𝑑𝑡
𝑇

−𝑇

∞

−∞
   

Graph 11 



 

To continue on with this proof it is easier to use the identity found in equation 60. 

60) 𝑒𝑖𝑦 = cos 𝑦 + 𝑖 sin 𝑦 

Using this identity we obtain equation 61. 

61) =   𝑐𝑜𝑠𝜔𝑡 − 𝑖𝑠𝑖𝑛𝜔𝑡 𝑑𝑡
𝑇

−𝑇
 

Because this function is an even function and the sine function is odd, this results in the sine part 

going to 0 and we can remove it from the equation (Equation 62)1. 

62) =  𝑐𝑜𝑠𝜔𝑡𝑑𝑡
𝑇

−𝑇
 

Next we can simply solve the integral resulting in equation 63. 

63) =
1

𝜔
𝑠𝑖𝑛𝜔𝑡|−𝑇

𝑇  

Inserting the limits into the equation we obtain equation 64. 

64) =
2 sin 𝜔𝑇

𝜔
 

Using the results obtain from this as well as the simple theorem, time shifting theorem (equation 

22) we obtain our result in equation 57 as desired. 

Example 2 is to prove that from equation 65 we can obtain equation 66. 

65) 
𝑑𝑛𝛿(𝑡)

𝑑𝑡 𝑛 ↔ (𝑖𝜔)𝑛  

66) 𝑡𝑛 ↔ 2𝜋𝑖𝑛
𝑑𝑛𝛿(𝜔)

𝑑𝜔 𝑛  

We must first prove the validity of the above statement of equation 65 before we can show its 

relationship to equation 66. 



 

We start this proof by using the symmetry simple theorem (symmetry equation found in equation 

70) and then substituting into the inversion formula (equation 67). 

67. 
1

2𝜋
 2𝜋

∞

−∞

𝑑𝑛𝛿(−𝜔)

𝑑(−𝜔)𝑛
𝑒−𝑖𝜔𝑡 𝑑𝜔 

We can pull out the constants which will cancel the 2π’s and because we know that δ(t) ↔ 1 we can 

simply remove δ(-ω) from the equation. Also, we can remove (-1)n  from the denominator and pull it out 

front. After doing these steps we obtain equation 681. 

68.  (−1)𝑛 𝑑𝑛

𝑑𝜔 𝑛 𝑒−𝑖𝜔𝑡 𝑑𝜔
∞

−∞
 

We then have, from equations 44 and 45, the resulting in our desired result thus proving equation 65. 

69. (𝑖𝑡)𝑛  

Next, using the symmetry simple theorem on equation 65 once more, we can obtain equation 66 

(equation 70). 

70. (𝑖𝑡)𝑛 ↔ 2𝜋
𝑑𝑛𝛿(−𝜔)

𝑑(−𝜔)𝑛
 

We can multiply both sides by in to obtain equation 71.  Doing multiplication with constants is allowed 

because they do not contain the variable that is affected by the integration limits. Also the δ(-ω) = δ(ω) 

because the Fourier Transform of both will equal 1. 

71. 𝑖2𝑛𝑡𝑛 ↔ 2𝜋𝑖𝑛
𝑑𝑛𝛿(𝜔)

𝑑(−𝜔)𝑛
 

We can obtain equation 72, by removing (-1)n from the right hand side and also by realizing that  

i2n = (-1)n  and so we can remove the (-1)n from both sides of the equation and we are left with equation 

66 as desired. 



 

Convolution Theorem 

 The convolution is similar to the simple theorems however its importance is greater.  It is also a 

formula that is used to help to simplify many formulas1.  This theorem is not matched up with the simple 

theorems because it is more complex as well as being used more frequently.  The convolution theorem 

states that when we are given two functions f1(x) and f2(x) we can form the integral found in equation 

721. 

72. 𝑓 𝑥 =   𝑓1 𝑦 𝑓2 𝑥 − 𝑦 𝑑𝑦
∞

−∞
 

This function f(x) is known as the convolution of these two functions and is typically denoted as equation 

73. 

73. 𝑓 𝑥 = 𝑓1(𝑥) ∗ 𝑓2(𝑥) 

The time convolution theorem states that if f1(t)↔F1(ω) and f2(t)↔F2(ω) then equation 74 results. 

74.  𝑓1 𝜏 𝑓2 𝑡 − 𝜏 𝑑𝜏 ↔ 𝐹1 𝜔 𝐹2(𝜔)
∞

−∞
 

To prove this theorem, we must use the Fourier Integral (equation 1) of f(t). Using substitution, equation 

75 results. 

75. 𝐺 𝜔 =  𝑒−𝑖𝜔𝑡   𝑓1 𝜏 𝑓2 𝑡 − 𝜏 𝑑𝜏
∞

−∞
 

∞

−∞
dt 

We can change the order of integration which results in equation 76. 

76. =  𝑓1 𝜏 
∞

−∞
  𝑒−𝑖𝜔𝑡 𝑓2 𝑡 − 𝜏 𝑑𝑡

∞

−∞
 𝑑𝜏 

By the time shifting theorem (equation 22) we obtain equation 77. 

77. =  𝑓1 𝜏 𝑒
−𝑖𝜔𝑡∞

−∞
𝐹2 𝜔 𝑑𝜏 



 

We can remove F2(ω) from the integral because it is a constant in this case and it can clearly be seen 

that we obtain equation 78 which is our desired result1. 

78. 𝐺 𝜔 = 𝐹1 𝜔 𝐹2(𝜔) 

Equation 79 is stating the frequency convolution theorem. 

79. 𝑓1 𝑡 𝑓2(𝑡) ↔
1

2𝜋
 𝐹1 𝑦 𝐹2 𝜔 − 𝑦 𝑑𝑦

∞

−∞
 

We can substitute this into the inversion formula (equation 2) to get the resulting, equation 80. 

80. =
1

2𝜋
 𝑒𝑖𝜔𝑡  

1

2𝜋
 𝐹1 𝑦 

∞

−∞
𝐹2 𝜔 − 𝑦 𝑑𝑦 𝑑𝜔

∞

−∞
 

We can change the order of the integration limits to obtain equation 81. 

81. =
1

2𝜋
 𝑒𝑖𝜔𝑡 𝐹2 𝜔 − 𝑦  

1

2𝜋
 𝐹1 𝑦 

∞

−∞
𝑑𝑦 𝑑𝜔

∞

−∞
 

From the time convolution theorem and the inversion formula we can clearly see that the resulting 

equation (equation 82) is our desired result and thus proving this statement made by the frequency 

convolution theorem1. 

82. = 𝑓1 𝑡 𝑓2(𝑡) 

Sampling Theorem 

The sampling theorem is a technique that is important in transmission of information.  This theorem is 

stating that if there is some frequency (ωc) of which function f(t) is 0 above (Equation 83), then f(t) can 

be uniquely determined from its values of fn (Equation 84)1.   

83. 𝐹 𝜔 =  0  𝑓𝑜𝑟  𝜔  ≥  𝜔𝑐  

84. 𝑓𝑛 = 𝑓  𝑛
𝜋

𝜔𝑐
  



 

To start this proof, we must insert our fn function into the inversion formula (Equation 2) and change 

the integration limits because of the parameters set in equation 83.  Equation 85 is showing the 

basic formula in this case with our f(t) (Equation 87) function where equation 86 is showing the 

same equation with our specific fn in place1. 

85. 𝑓 𝑡 =
1

2𝜋
 𝐹 𝜔 𝑒𝑖𝜔𝑡 𝑑𝜔

𝜔𝑐

−𝜔𝑐
 

86. 𝑓𝑛 = 𝑓  𝑛
𝜋

𝜔𝑐
 =  

1

2𝜋
 𝐹 𝜔 𝑒𝑖𝑛𝜋𝜔 /𝜔𝑐𝑑𝜔

𝜔𝑐

−𝜔𝑐
 

87. 𝑓 𝑡 =  𝑓𝑛
sin (𝜔𝑐𝑡−𝑛𝜋 )

𝜔𝑐𝑡−𝑛𝜋
∞
𝑛=−∞  

Next we would like to expand this formula into a Fourier series (Equation 88) in the interval  of –ωc 

<ω< ωc. 

88. 𝐹 𝜔 =  𝐴𝑛𝑒−𝑖𝑛2𝜋𝜔 /2𝜔𝑐𝑑𝜔∞
𝑛=−∞                            𝐴𝑛 =

1

2𝜔𝑐
 𝐹 𝜔 𝑒𝑖𝑛𝜋𝜔 /𝜔𝑐𝑑𝜔

𝜔𝑐

−𝜔𝑐
 

We can conclude, from equation 86, through simple substitution that equation 89 will result. 

89. 𝐴𝑛 =
𝜋

𝜔𝑐
𝑓𝑛  

The sum (Equation 90) is then expressed as the periodic repetition of F(ω) and can be written as a 

product of F*(ω) and the pulse function pωc.(Equation 911). 

90. 𝐹 ∗  𝜔 =  
𝜋

𝜔𝑐
𝑓𝑛𝑒𝑖𝑛𝜋𝜔 /𝜔𝑐∞

𝑛=−∞  

91. 𝐹 𝜔 = 𝑝𝜔𝑐
(𝜔)  

𝜋

𝜔𝑐
𝑓𝑛𝑒𝑖𝑛𝜋𝜔 /𝜔𝑐∞

𝑛=−∞  

Our next step is to compare this to a Fourier Transform that we assume is true (Equation 92) and we 

can then see our expected result (Equation 87)1. 

92. 
𝜔𝑐

𝜋

sin (𝜔𝑐𝑡−𝑛𝜋 )

𝜔𝑐𝑡−𝑛𝜋
↔ 𝑝𝜔𝑐

(𝜔) 𝑓𝑛𝑒𝑖𝑛𝜋𝜔 /𝜔𝑐  



 

These theorems are some of the many theorems that are used in the study of Fourier Transforms. 

There are a wide variety of fields that these transforms have applications on and this research is just 

some of the more basic results.  With more extensive work and more complex theorems, there 

would be many other real world applications to be shown. 
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Identities used 

𝐹 𝜔 =   𝑓 𝑡 𝑒−𝑖𝜔𝑡

∞

−∞

𝑑𝑡 

 𝛿 𝑡 𝜙 𝑡 𝑑𝑡 =  𝜙(0)

∞

−∞

 

𝜙 𝑡 =   𝜙 𝑥 𝛿 𝑡 − 𝑥 𝑑𝑥

∞

−∞

 

𝑒𝑖𝑦 = cos 𝑦 + 𝑖 sin 𝑦 

𝜔𝑐

𝜋

sin(𝜔𝑐𝑡 − 𝑛𝜋)

𝜔𝑐𝑡 − 𝑛𝜋
↔ 𝑝𝜔𝑐

(𝜔) 𝑓𝑛𝑒𝑖𝑛𝜋𝜔 /𝜔𝑐  
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