EXAM 4 - MATH 310 YOUR NAME:

Read each problem **very carefully** before starting to solve it. Each problem is worth 10 points. It is necessary to show **all** your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

- 1. We know that $\mathcal{L}{t^6} = \frac{6!}{s^7}$, for s > 0.
 - (a) Use the definition of Laplace transform to write an integral equation equivalent to the given equation.
 - (b) Use the equation of Part (a) to evaluate "from scratch" the Laplace transform $\mathcal{L}\{t^7\}$.

2. Find the Laplace tranform of the function $f(t) = \begin{cases} 0, & \text{if } t < 3\\ (t-3)^5, & \text{if } t \ge 3 \end{cases}$.

3. Suppose
$$F(s) = \frac{3s^2 + 2s - 17}{s^3 - 8s^2 + 17s}$$
. Find $\mathcal{L}^{-1}{F(s)}$.

4. Solve the initial value problem

$$y'' + 4y = \delta(t - \pi), \quad y(0) = 2, y'(0) = 0.$$

5. Express the solution of

$$y'' + 3y' + 2y = \cos \omega t, \quad y(0) = 1, y'(0) = 0$$

in terms of a convolution integral.

$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}{f(t)}$	10. $e^{at} \cos bt$	$\frac{s-a}{(s-a)^2+b^2}$
1	$\frac{1}{s}$, $s > 0$	the second second second second	680 - 688 - 686 - 686 - 686 - 686 - 686 - 686 - 686 - 686 - 686 - 686 - 686 - 686 - 686 - 686 - 686 - 686 - 68 - 686 - 686 - 686 - 686 - 686 - 686 - 686 - 686 - 686 - 686 - 686 - 686 - 686 - 686 - 686 - 686 - 686 - 686 - 68
e^{at}	$\frac{1}{s-a}, \qquad s > a$	11. $t^n e^{at}$, $n = \text{positive integer}$	$\frac{n!}{(s-a)^{n+1}},$
t^n , $n =$ positive integer	$\frac{n!}{s^{n+1}}, \qquad s > 0$	12. $u_c(t)$	$\frac{e^{-cs}}{s}$, s
$t^p, p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}, \qquad s > 0$	13. $u_c(t)f(t-c)$	$e^{-cs}F(s)$
sin at	$\frac{a}{s^2 + a^2}, \qquad s > 0$	14. $e^{ct}f(t)$	F(s-c)
cos at	$\frac{s}{s^2 + a^2}, \qquad s > 0$	15. $f(ct)$	$\frac{1}{c}F\left(\frac{s}{c}\right),$
sinh at	$\frac{a}{s^2 - a^2}, \qquad s > a $	16. $\int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)
cosh at	$\frac{s}{s^2-a^2}, \qquad s > a $	17. $\delta(t-c)$	e^{-cs}
$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}, \qquad s > a$	18. $(-t)^n f(t)$	$F^{(n)}(s)$