EXAM 4 - MATH 152 YOUR NAME:

Friday, December 2 George Voutsadakis

Read each problem **very carefully** before starting to solve it. Each problem is worth 10 points. It is necessary to show **all** your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Determine whether the following series converge and, if so, find the limit.

(a)
$$-\frac{4}{9} + \frac{8}{27} - \frac{16}{81} + \frac{32}{243} - \cdots$$

(b) $2 - \frac{5}{2} + \frac{25}{8} - \frac{125}{32} + \frac{625}{128} - \cdots$

2. Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n+\sqrt{n}}$ converges. (Fully justify your answer.)

3. Determine whether the series $\sum_{n=2}^{\infty} \frac{\cos(\pi n)}{\sqrt[3]{n^2}}$ converges absolutely, conditionally or not at all (fully justify your answer).

4. Find the radius and the internal of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(x-1)^{2n+1}}{3n \cdot 4^n}.$$

5. Recall that $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$, if |x| < 1. Find the Maclaurin series for the function $f(x) = x \ln (1 + \frac{x}{2})$.

Table of Methods:

Sequences	Series	Series w/ Positive Terms
1. Function Method	1. Definition	1. Integral Test
2. Geometric Sequences	2. Telescoping Series	2. <i>p</i> -Series
3. Limit Laws	3. Linearity	3. Comparison Test
4. Squeeze	4. Geometric Series	4. Limit Comparison
5. Continuity	5. Divergence Test	
	6. Ratio Test	
	7. Root Test	