Read each problem very carefully before starting to solve it. Each problem is worth 5 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. (a) Let A and B be two $n \times n$ matrices. Show that, if $A B$ is invertible, then B is also invertible.
(b) Show that if A is an invertible $n \times n$ matrix, then the cancelation law $A B=A C \Rightarrow$ $B=C$ holds, for all matrices B and C (for which the products make sense).
2. Decide whether the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, defined by

$$
T\left(x_{1}, x_{2}\right)=\left(-5 x_{1}+9 x_{2}, 4 x_{1}-7 x_{2}\right)
$$

is invertible. If so, find a similar expression for its inverse T^{-1}.
3. Calculate the following number.
$\left|\begin{array}{rrrr}1 & -2 & 5 & 2 \\ 0 & 0 & 3 & 1 \\ 2 & -6 & -7 & 5 \\ 5 & 0 & 4 & 0\end{array}\right|=$

