EXAM 2 - MATH 251 YOUR NAME: \qquad
Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. (a) Find the values of the parameters a and b so that the plane with equation $a x+3 y-z=b$ is parallel to the line $\boldsymbol{r}(t)=\langle 1+2 t,-3 t, 7-5 t\rangle$ and passes through the point $(-10,10,7)$.
(b) Suppose that $\boldsymbol{r}(t)=\left\langle t^{2}, 1-t, 4 t\right\rangle, s(2)=\langle 1,3,3\rangle$ and $s^{\prime}(2)=\langle-1,4,1\rangle$. Find the derivative of $\boldsymbol{r}(t) \cdot \boldsymbol{s}(t)$ at $t=2$.
(c) Suppose $\boldsymbol{r}(t)=\left\langle t^{2}, 2 t, 9 t^{-2}\right\rangle, g(4)=3$ and $g^{\prime}(4)=-9$. Evaluate $\left.\frac{d}{d s} \boldsymbol{r}(g(s))\right|_{s=4}$.
2. Find a parametrization of the tangent line to $\boldsymbol{r}=\left\langle 1-t^{2}, 5 t, 2 t^{3}\right\rangle$ at $t=2$.
3. Consider the curve $\boldsymbol{r}(t)=\langle\sin 3 t, \cos 3 t, 4 t\rangle$.
(a) Find the length $s(t)$ of $\boldsymbol{r}(t)$ between $t=0$ and an arbitrary time t.
(b) Give an arc length parametrization of $\boldsymbol{r}(t)$.
4. Evaluate the curvature of

$$
\boldsymbol{r}(t)=\left\langle 3-t, e^{2 t}, t-t^{2}\right\rangle
$$

$$
\text { at } t=1 \text {. }
$$

5. Find the unit tangent and the unit normal vector to $\boldsymbol{r}(t)=\left\langle\ln t, 2 t, t^{2}\right\rangle$ at $t=1$.
