Read each problem very carefully before starting to solve it. Each problem is worth 5 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. (a) Describe $\frac{x^{2}}{y z}=1$ by an equation of the form $z=f(r, \theta)$ in cylindrical coordinates.
(b) Describe $z^{2}=3\left(x^{2}+y^{2}\right)$ by an equation in spherical coordinates.
2. Use as elegant a parametrization as you can to parameterize the intersection curve of the surfaces $x^{2}+y^{2}=1$ and $z=4 x^{2}$.

3. Let $\boldsymbol{r}_{1}(t)=\left\langle t^{2}, 1,2 t\right\rangle$ and $\boldsymbol{r}_{2}(t)=\left\langle 1,2, e^{t}\right\rangle$. Follow the instructions closely:
(a) Compute $\boldsymbol{r}(t)=\boldsymbol{r}_{1}(t) \times \boldsymbol{r}_{2}(t)$.
(b) Use the answer in Part (a) to compute $\boldsymbol{r}^{\prime}(t)$.
(c) Compute $\left(\boldsymbol{r}_{1}(t) \times \boldsymbol{r}_{2}(t)\right)^{\prime}$ using the product rule.
(d) Find a tangent vector to $\boldsymbol{r}(t)$ at $t=1$.
(e) Find an equation (in vector or parametric form) for the tangent line to $\boldsymbol{r}(t)$ at $t=1$.
