EXAM 1 SOLUTIONS - CSCI 341

Friday, September 21 George Voutsadakis

Read each problem **very carefully** before starting to solve it. Each problem is worth 10 points. It is necessary to show **all** your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. (a) Show that $A \to \neg B \equiv \neg (A \land B)$

A	B	$\neg B$	$A \to \neg B$	$A \wedge B$	$\neg (A \land B)$
T	T	F	F	T	F
-	F	T	T	F	T
F	T	F	T	F	T
F	F	T	T	F	T

(b) The contrapositive of $A \to B$ is

 $\neg B \rightarrow \neg A$

(c) The negation of the statement "George is a Democrat or George is a Republican" is the statement

"George is neither a Democrat nor a Republican".

(d) The converse of the statement "If there are more than 50 Republican Senators, then there are at most 49 Democratic Senators" is the statement

> "If there are at most 49 Democratic Senators, then there are more than 50 Republican Senators".

- (e) The statement "If $6 \mid x$ then $4 \mid x$ " is <u>False</u> **Proof:** By counterexample: For $x = 6, 6 \mid 6$ but $4 \nmid 6$.
- (f) Prove the statement "If $x^2 2x + 3$ is odd, then x is even", where x is assumed to be an integer.

Proof: By contraposition, we show

If x is odd, then $x^2 - 2x + 3$ is even.

Suppose x is odd. Then x = 2k + 1, for some $k \in \mathbb{Z}$. So $x^2 - 2x + 3$

Since $2k^2 + 1 \in \mathbb{Z}$, this shows that $x^2 - 2x + 3$ is even.

2. Fill in the blanks:

- (a) $\{a, b\} \in \{a, \{b\}, \{a, b\}\};$
- (b) $\{0, 1, 2, 3, 4, 5\} \cap (\{0, 3, 4, 5, 6, 7\} \{0, 1, 2, 3\}) = \{0, 1, 2, 3, 4, 5\} \cap \{4, 5, 6, 7\} = \{4, 5\};$
- (c) $\mathcal{P}(\{0,a\}) = \{\emptyset, \{0\}, \{a\}, \{0,a\}\};$
- (d) $A B = \{x \in A : x \notin B\};$
- (e) $A \oplus B = \{x : (x \in A \text{ or } x \in B) \text{ and } x \notin A \cap B\};$
- (f) Let $A = \{2k + 7 : k \in \mathbb{Z}\}$ and $B = \{4k + 3 : k \in \mathbb{Z}\}$. Show that $B \subset A$. **Proof**:

This consists of two parts:

- Part 1: First show that $B \subseteq A$: Let $x \in B$. Then x = 4k + 3, for some $k \in \mathbb{Z}$. So x = 4k - 4 + 7 = 2(2k - 2) + 7. Since $2k - 2 \in \mathbb{Z}$, we get that $x \in A$.
- Part 2: Second show that $B \neq A$: We have $9 \in A$, since $9 = 2 \cdot 1 + 7$. On the other hand $9 \notin B$, since 4k + 3 = 9 has no solution in Z.

- 3. Fill in the blanks:
 - (a) $A \times B = \{(a, b) : a \in A \text{ and } b \in B\};$
 - (b) $\operatorname{cons}(\operatorname{head}(\langle \langle a \rangle, \langle \langle \rangle, \langle a, b \rangle \rangle)), \operatorname{tail}(\operatorname{tail}(\langle \langle a \rangle, \langle a, b \rangle, \langle c \rangle, \langle \langle \rangle, \langle a, b \rangle \rangle)))$

$$= \operatorname{cons}(\langle a \rangle, \operatorname{tail}(\langle \langle a, b \rangle, \langle c \rangle, \langle \langle \rangle, \langle a, b \rangle \rangle)))$$

= $\operatorname{cons}(\langle a \rangle, \langle \langle c \rangle, \langle \langle \rangle, \langle a, b \rangle \rangle))$
= $\langle \langle a \rangle, \langle c \rangle, \langle \langle \rangle, \langle a, b \rangle \rangle$.

- (d) Only in (d), assume $L = \{\Lambda, a, bab\}$ and $M = \{aba, b, bab\}$.

 $LM = \{aba, b, bab, aaba, ab, abab, babbab, babbab\}.$

- (e) $L^+ = L^1 \cup L^2 \cup L^3 \cup L^4 \cup \cdots;$
- (f) The statement that for all languages L and M,

$$L^* - M^* = (L - M)^*$$

is \underline{False}

Proof: For any languages L and M,

$$\Lambda \in L^*, \qquad \Lambda \in M^*, \qquad \Lambda \in (L-M)^*.$$

Therefore, $\Lambda \notin L^* - M^*$, but $\Lambda \in (L - M)^*$. So $L^* - M^* \neq (L - M)^*$.

- 4. Fill in the blanks:
 - (a) If $f : A \to B$ and $S \subseteq A$,

$$f(S) = \{f(s) : s \in S\};$$

(b) If $f : A \to B$ and $T \subseteq B$,

$$f^{-1}(T) = \{ a \in A : f(a) \in T \};$$

(c) Finish the formal statement of the division algorithm:

For every integers m and n, with $n \neq 0$, there exist unique $q, r \in \mathbb{Z}$, with $0 \leq r < |n|$, such that

$$m = n \cdot q + r.$$

(d) Apply Euclid's algorithm to find the gcd of 612 and 50. Show carefully all iterations of the algorithm:

Iteration 1: $612 = 50 \cdot 12 + 12;$ Iteration 2: $50 = 12 \cdot 4 + 2;$ Iteration 3: $12 = 2 \cdot 6 + 0.$

So gcd(612, 50) = 2.

(e) dist(0, map(+)(pairs(seq(3), seq(3))))

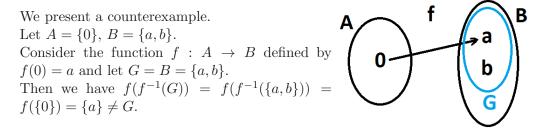
 $= \operatorname{dist}(0, \operatorname{map}(+)(\operatorname{pairs}(\langle 0, 1, 2, 3 \rangle, \langle 0, 1, 2, 3 \rangle))) \\= \operatorname{dist}(0, \operatorname{map}(+)(\langle (0, 0), (1, 1), (2, 2), (3, 3) \rangle)) \\= \operatorname{dist}(0, \langle 0, 2, 4, 6 \rangle) \\= \langle (0, 0), (0, 2), (0, 4), (0, 6) \rangle.$

(f) The statement that, for every function $f: A \to B$ and every subset $G \subseteq B$,

$$f(f^{-1}(G)) = G$$

is <u>False</u>

Proof:



5. (a) A function $f: A \to B$ is injective (or 1-1) if

for all $a, a' \in A$, if $a \neq a'$, then $f(a) \neq f(a')$.

(b) A function $f: A \to B$ is surjective (or onto) if

for all $b \in B$, there exists an $a \in A$, such that f(a) = b.

Equivalently, if f(A) = B.

(c) Consider the function $f : \mathbb{Z}_6 \to \mathbb{Z}_6$, defined by $f(x) = 5x \mod 6$.

x	f(x)
0	0
1	5
2	4
3	3
4	2
5	1
	1

- (i) The statement "f is injective" is <u>True</u>, because no two distinct elements in the domain map to the same element in the codomain.
- (ii) The statement "f is surjective" is <u>True</u>, because all six elements in the codomain are in the image of f.
- (iii) The statement "f has an inverse" is <u>True</u>, because f is bijective (recall that we proved that a function f has an inverse if and only if it is bijective).
- (d) Let $f: A \to B$ and $g: B \to C$ be functions. The statement "If $g \circ f$ is surjective, then g is surjective" is <u>True</u>

Proof:

Let $c \in C$. Then, since $g \circ f : A \to C$ is surjective, there exists $a \in A$, such that

$$g(f(a)) = c.$$

But then, there exists $b = f(a) \in B$, such that

g(b) = g(f(a)) = c.

This proves that $g: B \to C$ is surjective.