Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. (a) Give the formal inductive definition of the set of regular languages over alphabet A.

Basis: $\emptyset,\{\Lambda\}$ and $\{a\}$ are regular languages, for all $a \in A$;
Induction: If L and M are regular languages, then the following languages are also regular: $L \cup M, M L$ and L^{*}.
(b) Give a regular expression for the language of all strings over alphabet $A=\{a, b, c\}$ that start with $a b c$ or end with $c b a$.
$a b c(a+b+c)^{*}+(a+b+c)^{*} c b a$
(c) Give a regular expression for the language of all strings over the alphabet $A=\{0,1\}$ that do not end with 01.
$\Lambda+0+1+(0+1)^{*}(00+10+11)$
(d) Give a formal recursive definition of the operator L that takes as input a regular expression over alphabet A and outputs the regular language that is represented by the given regular expression.

Basis: $L(\emptyset)=\emptyset ; L(\Lambda)=\{\Lambda\} ; L(a)=\{a\}$, for all $a \in A$;
Recursion: $L(R+S)=L(R) \cup L(S) ; L(R \cdot S)=L(R) L(S) ; L\left(R^{*}\right)=L(R)^{*}$.
(e) The statement "The language L of all strings over alphabet $A=\{a, b\}$ that have odd length is regular" is true

Proof:

The language L of all strings over alphabet $A=\{a, b\}$ that have odd length is regular because it is the language of the following regular expression:

$$
(a+b)(a a+a b+b a+b b)^{*}
$$

2. (a) The transition function of a DFA is a function $\delta: \underline{S \times A} \rightarrow \underline{S}$, where
S is the set of states and A is the input alphabet of the DFA.
(b) The transition function of an NFA is a function $\delta: \underline{S \times(A \cup\{\Lambda\})} \rightarrow \underline{\mathcal{P}(S)}$, where
S is the set of states and A is the input alphabet of the DFA.
(c) An NFA N accepts a string w over its input alphabet A if, by definition
there exists an execution that consumes all the letters of w and ends in a final state.
(d) Give an NFA that recognizes the regular language $\{a, b\}^{*}\{a b\}$.

(e) Apply the NFA to DFA algorithm to obtain the DFA that corresponds to the NFA you constructed in Part (d).
We get the transition table on the left, where $\{0\}$ is the initial state and $\{0,2\}$ is the only final state. By renaming the states we get the transition table on the right, with 0 the initial state and 2 the only final state.

	a	b
$\{0\}$	$\{0,1\}$	$\{0\}$
$\{0,1\}$	$\{0,1\}$	$\{0,2\}$
$\{0,2\}$	$\{0,1\}$	$\{0\}$

	a	b
0	1	0
1	1	2
2	1	0

The DFA is pictured below.

3. (a) Give the form of productions that are allowed in a regular grammar, explaining your symbols.

A grammar is called a regular grammar if each production takes one of the following forms, where the uppercase letters are nonterminals and w is a nonempty string of terminals:

$$
S \rightarrow \Lambda, \quad S \rightarrow w, \quad S \rightarrow T, \quad S \rightarrow w T .
$$

(b) Under each regular expression provide the regular grammar whose language is the same as that represented by the corresponding regular expression:

$a^{*}+b^{*}$	$b a^{*}$	$(a b a)^{*}$
$S \rightarrow A \mid B$	$S \rightarrow b A$	$S \rightarrow \Lambda \mid a b a S$
$A \rightarrow a A \mid \Lambda$	$A \rightarrow a A \mid \Lambda$	
$A \rightarrow b B \mid \Lambda$		

(c) Find a regular grammar for the language represented by the regular expression $a^{*} b c^{*}+a c$.

$$
\begin{aligned}
& S \rightarrow a c \mid A \\
& A \rightarrow a A \mid b C \\
& C \rightarrow c C \mid \Lambda
\end{aligned}
$$

(d) Apply the algorithm converting a regular grammar to an NFA to obtain an NFA corresponding to the regular grammar that you gave in Part (c).

4. (a) The PDA instruction $\langle A, a, X$, push $(Y), B\rangle$ can be shown pictorially as follows:

The interpretation of it is that:

If at state A, reading input symbol a and X at the top of the stack, then transition to state B and push symbol Y at the top of the stack.
(b) Give the formal definition of an instantaneous description (ID) in a computation of a PDA.

An instantaneous description in the computation of a PDA is a triple of the form
(current state, unconsumed input, stack contents)
that represents the current state and current status of input and stack during a computation of the PDA.
(c) Consider the following PDA with initial stack symbol X. Give a formal description of an accepting computation on input string 110011 in terms of IDs.

$$
\begin{aligned}
(A, 110011, X) & \rightarrow(B, 110011, Y X) \rightarrow(B, 10011, Y Y X) \rightarrow(B, 0011, Y Y Y X) \\
& \rightarrow(B, 011, Y Y Y Y X) \rightarrow(C, 011, Y Y Y X) \rightarrow(C, 11, Y Y X) \\
& \rightarrow(C, 1, Y X) \rightarrow(C, \Lambda, X) \rightarrow(D, \Lambda, X) .
\end{aligned}
$$

(d) "The language accepted by the PDA of Part (c) is the language of palindromes over $A=\{0,1\} "$ is false
proof:

The string 01 is also accepted and is not a palindrome:

$$
(A, 01, X) \rightarrow(B, 01, Y X) \rightarrow(B, 1, Y Y X) \rightarrow(C, 1, Y X) \rightarrow(C, \Lambda, X) \rightarrow(D, \Lambda, X) .
$$

(e) Give a PDA that recognizes the language $\left\{a^{n+1} b^{n} a: n \geq 1\right\}$ (make sure to state which mode of acceptance your PDA is using).

5. (a) Give an example of a language that is context-free but not regular (write formally).

$$
L=\left\{a^{n} b^{n}: n \geq 0\right\}
$$

(b) Apply the relevant algorithm to construct a PDA that accepts the context-free language described by

$$
\begin{aligned}
& \rightarrow \text { (} \frac{\Lambda, \mathrm{S}}{\frac{\Lambda, \mathrm{a}}{\text { pop }} \frac{\Lambda, \mathrm{A}}{\frac{\mathrm{a}, \mathrm{a}}{\mathrm{pop}, \mathrm{push}(\mathrm{ABA})} \frac{\Lambda, \mathrm{b}}{\mathrm{pop}}} \frac{\Lambda, \mathrm{~B}}{\operatorname{pop}, \mathrm{push}(\mathrm{aA})}} \\
& S \rightarrow A B A \\
& A \rightarrow a A \mid \Lambda \\
& B \rightarrow b B \mid \Lambda \text {. }
\end{aligned}
$$

(c) Apply the relevant algorithm to eliminate Λ-productions from the following grammar:

Step 1: Detect $B \rightarrow \Lambda$;
$S \rightarrow a S A|b S B| A$
$A \rightarrow a B b \mid b B a$
$B \rightarrow a B|b B| \Lambda$
Step 2: B is involved in the right hand side of the rules on the left and cause addition of rules on right:

$$
\begin{array}{ll}
S \rightarrow b S B & S \rightarrow b S \\
A \rightarrow a B b & A \rightarrow a b \\
A \rightarrow b B a & A \rightarrow b a \\
B \rightarrow a B & B \rightarrow a \\
B \rightarrow b B & B \rightarrow b
\end{array}
$$

Step 3: The grammar becomes:

$$
\begin{aligned}
& S \rightarrow a S A|b S B| b S \mid A \\
& A \rightarrow a B b|b B a| a b \mid b a \\
& B \rightarrow a B|b B| a \mid b
\end{aligned}
$$

(d) Apply the relevant algorithm to produce the Chomsky Normal Form of the following context-free grammar.

Steps 1-2: Not needed.

$$
\begin{aligned}
& S \rightarrow C \\
& C \rightarrow a C a|b C b| A \\
& A \rightarrow a B b \mid b B a \\
& B \rightarrow a B|b B| b
\end{aligned}
$$

Step 3: $S \rightarrow C$ gives $S \rightarrow a C a$ and $S \rightarrow b C b, S \rightarrow A$ gives $S \rightarrow a B b$ and $S \rightarrow b B a$, and $C \rightarrow A$ gives $C \rightarrow a B b$ and $C \rightarrow b B a$
So we get

$$
\begin{aligned}
& S \rightarrow a C a|b C b| a B b \mid b B a \\
& C \rightarrow a C a|b C b| a B b \mid b B a \\
& B \rightarrow a B|b B| b
\end{aligned}
$$

Step 4: New grammar

$$
\begin{aligned}
& S \rightarrow A C A|B C B| A B B \mid B B A \\
& C \rightarrow A C A|B C B| A B B \mid B B A \\
& B \rightarrow A B|B B| b \\
& A \rightarrow a
\end{aligned}
$$

Step 5: Final grammar in Chomsky Normal Form:

$$
\begin{aligned}
& S \rightarrow A D|B E| A F \mid B G \\
& D \rightarrow C A \\
& E \rightarrow C B \\
& F \rightarrow B B \\
& G \rightarrow B A \\
& C \rightarrow A D|B E| A F \mid B G \\
& B \rightarrow A B|B B| b \\
& A \rightarrow a
\end{aligned}
$$

