EXAM 4 SOLUTIONS - CSCI 341 Friday, November 30

George Voutsadakis

Read each problem very carefully before starting to solve it. Each problem is worth 10
points. It is necessary to show all your work. Correct answers without explanations are
worth 0 points. GOOD LUCK!!

1.

(a)

Give the definition of a context-free language.

A language is context-free if it can be generated by a context-free grammar.

True or false?

(i) L ={a"b"c" : n € IN} is context free. False

(ii) M = {a"b"c* : n,k € N} is context-free. True
Proof of (ii):

The following context-free grammar generates M:

S — Sc|B
B — aBb|A

The union of two context free languages is context-free. True
Proof:

Suppose L1 and Lo are context-free languages. Then L is generated by a context free
grammar (1, with start symbol Sy, and Lo is generated by a context-free grammar G,
with start symbol Sy (G; and G5 can be taken to have disjoint sets of non-terminal
symbols). Therefore, L; U Lo is generated by the context-free grammar G with start
symbol S and productions S — Si|S; together with all those productions in G; and
those in G5. We conclude that L U Lg is also context-free.

The intersection of two context-free languages is context-free. False
Proof:

Ly = {a™"cF : n,k € IN} is context-free, as is Ly = {a*b"c" : n,k € IN}. But their
intersection Ly N Ly = {a™b"c™ : n € IN} is not context-free.

The complement of a context-free language is context-free. False
Proof:

If it was then, since the union of two context-free languages is context-free, then the
intersection would also be context-free:

LiNLy = (Lll U LIQ),



2. (a) Give a list of the six components in the formal definition of a Turing Machine and a
short description of each.
— A is the input alphabet;
— I' is the tape alphabet;
— (Q is a finite nonempty set of states;
— qo is the initial state;
— h is the final or halt state;
— ¢ is the transition relation.

(b) Give the “official form” of a Turing Machine Instruction with a short explanation
of its meaning.

An instruction is a tuple in (Q —{h}) xI'xI' x{L, S, R} x @, which directs the machine
at a specific state with its tape head reading a specific symbol to replace that symbol
by another symbol, move its head (left, right or stay) and transition to another state.

(c) Design a Turing Machine that on input w € {0,1}*, it shifts the contents of its tape one
cell to the left and stops (there is no prescription on where the head must be positioned).

(d) Design a Turing Machine that on input w € {a,b}* changes every second “a” in the
input to a “b” and halts with the head positioned on the first symbol of the output.




3. (a) Describe what is an effective enumeration of all Turing Machines.

An effective enumeration of all Turing Machines is a listing (possibly with repetitions)
of all Turing Machines by an algorithm.

(b) (i) Describe what is means for a decision problem to be decidable.

A decision problem is decidable if there is an algorithm that, given any arbitrary
instance of the problem, halts with the correct answer.

(ii) Describe what it means for a decision problem to be partially decidable.

A decision problem is partially decidable if there is an algorithm that, given any
arbitrary instance of the problem:

x Answers YES for those instances of the problem that have YES answers;
+* May run forever for those instances of the problem whose answers are NO.

(c¢) Define formally the Halting Problem describing carefully the input instances and the
question posed.

Is there an algorithm that can decide, given an arbitrary program and an arbitrary input,
whether the execution of the program halts on the given input?

(d) Define formally the Total Problem describing carefully the input instances and the ques-
tion posed.

Is there an algorithm to tell whether an arbitrary computable function is total?

(e) True or False?

(i) The Halting Problem is partially decidable. True
(ii) The Halting Problem is decidable. False

)
(iii) There is an effective enumeration of all total computable functions. False
(iv) The Total Problem is decidable. False

)

(v) The complement of the Halting Problem is partially decidable. False



4. (a)

Define a nondeterministic algorithm.

A nondeterministic algorithm for an instance I of a decision problem has two distinct
stages:

Guessing: Guess a possible solution S for instance I.

Checking: A deterministic algorithm starts up to check whether the guess S from the guessing

(b)

stage is a solution to instance 1.
This checking algorithm will halt with the answer YES if and only if S is a solution
of I, but it may or may not halt if .S is not a solution of I.

Define the class P.

P is the class of all decision problems that are solvable by deterministic algorithms that
have worst-case running time polynomial in the size of the input.

Define the class NP.

The class NP consists of those decision problems that can be solved by nondeterministic
algorithms in polynomial time.

Define formally the decision version of the Traveling Salesman Problem describing care-
fully the input instances and the question posed.

Given a set of n cities, a set of distances between them and a bound B > 0, does there
exist a tour of the n cities that starts and ends at the same city, such that the total
distance traveled is less than or equal to B?

Define formally the Clique Problem describing carefully the input instances and the
question posed.

Given graph G with n vertices and a natural number £ < n, decide whether G has a
clique with k vertices.

The statement “The Clique Problem is in NP” is True
Proof:

Consider a graph G with n vertices and a natural number k < n.
A nondeterministic algorithm works as follows:

The Guessing Stage guesses a set of vertices {v1,...,v;} in G that forms potentially a
clique of k vertices.
Then the Checking Stage uses at most @ comparisons to check whether the k vertices

are connected to each other by edges.
Since k < n, the comparisons for any instance can be checked in time O(n2).



(a) Define formally a quantified Boolean formula.

A quantified Boolean formula is a logical expression of the form

Qix1Q2x2 - QuanE, n>1,

where:

— each Q); is either V or 3;

— each z; is distinct;

— F is a formula of the propositional calculus that is restricted to using the variables
T1,...,Ty; the operations —, A and V and parentheses.

(b) Define recursively the function val from the set of quantified Boolean formulae to the
set {T, F'}.
Basis:
val(T) =T and val(F) = F;
Recursion Cases:

— val(—A) = —wval(A);
— val(A A B) = val(A4) A val(B);

(AV B) =val(A) V val(B);

(VzE) =val(E(x/T)) Aval(E(x/F));
al(FzE) = val(E(z/T)) V val(E(z/F)).

— val

— val

<

(c) Construct the Recursion Tree to decide the truth value of the quantified Boolean formula
Favy((-z Vy) A(z Vv —y))

FzVy (( —any (z V—y))

/\

Yy ((F V ’1/ A (T V —y)) Yy (T v 1/ (FV —y))

e A\

(FVT)N(TVF) (FVF)A(TVT) (T'VT)N(FVF) (TVF)N(FVT)
T F F T

(d) Define formally the Quantified Boolean Formula Problem describing carefully the input
instances and the question posed.

Given a quantified Boolean formula, is it true?



