QUIZ 1 - SOLUTIONS

1. (a) Consider propositional variables A, B and C. Use the truth table method to show that the two propositions $A \to (B \lor C)$ and $(A \land \neg B) \to C$ are equivalent.

Construct the truth tables for $A \to (B \lor C)$ and $(A \land \neg B) \to C$ and show that the corresponding columns are identical:

A	B	C	$B \vee C$	$A \to (B \lor C)$			$(A \land \neg B) \to C$
T	T	T	T	T	F	F	T
T	T	F	T	T	F	F	T
T	F	T	T	T	T	T	T
T	F	F	F	F	T	T	F
F	T	T	T	T	F	F	T
F	T	F	T	T	F	F	T
F	F	T	T	T	T	F	T
F	F	F	F	T	T	F	T

(b) Assume the following:

A: "*n* is a nonnegative integer" B: "*n* is even" C: "*n* is odd"

Express in ordinary English the following propositions:

 $-A \rightarrow (B \lor C)$:

If n is a nonnegative integer, then n is even or n is odd.

 $- (A \land \neg B) \to C:$

If n is a nonnegative integer and n is not even, then n is odd.

2. (a) Let A be a propositional variable and let F be a false proposition. Construct the truth table for $(\neg A \rightarrow F) \rightarrow A$.

In class, we gave a proof of the statement "There are infinitely many primes". Answer the following questions concerning the proof. You must be concise and precise. [Here is a reminder of the proof:

Suppose there exist only finitely many primes, say p_1, p_2, \ldots, p_n . Consider the number

 $k = p_1 p_2 \cdots p_n + 1.$

Since it is larger than all of p_1, \ldots, p_n , it cannot be a prime. By the Decomposition into Primes, it is a product of primes, say $k = p_{i_1} \cdots p_{i_\ell}$. Now we have

$$p_1p_2\cdots p_n+1=p_{i_1}\cdots p_{i_\ell}.$$

This gives $1 = p_{i_1} \cdots p_{i_\ell} - p_1 p_2 \cdots p_n$. But the right hand side is divisible by p_{i_1} (since it is a prime and, therefore, among the p_1, \ldots, p_n). Thus, $p_{i_1} \mid 1$, a contradiction.]

- (b) We gave a proof by <u>contradiction</u>
- (c) We assumed that there were finitely many primes
- (d) Under (c) we proved that a prime number divides 1
- (e) We concluded that there are infinitely many primes
- (f) Which statement should A stand for in Part (a) so that the proof described in Parts (c)-(e) is mirrored by the proposition $(\neg A \rightarrow F) \rightarrow A$?

A: "There are infinitely many primes"

Then the proposition $(\neg A \rightarrow F) \rightarrow A$ gives the statement:

If the existence of finitely many primes implies a false statement, then there are infinitely many primes.