1. (a) Consider propositional variables A, B and C. Use the truth table method to show that the two propositions $A \rightarrow(B \vee C)$ and $(A \wedge \neg B) \rightarrow C$ are equivalent.
Construct the truth tables for $A \rightarrow(B \vee C)$ and $(A \wedge \neg B) \rightarrow C$ and show that the corresponding columns are identical:

A	B	C	$B \vee C$	$A \rightarrow(B \vee C)$	$\neg B$	$A \wedge \neg B$	$(A \wedge \neg B) \rightarrow C$
T	T	T	T	T	F	F	T
T	T	F	T	T	F	F	T
T	F	T	T	T	T	T	T
T	F	F	F	F	T	T	F
F	T	T	T	T	F	F	T
F	T	F	T	T	F	F	T
F	F	T	T	T	T	F	T
F	F	F	F	T	T	F	T

(b) Assume the following:

$$
\begin{aligned}
& A: " n \text { is a nonnegative integer" } \\
& B: " n \text { is even" } \\
& C: " n \text { is odd" }
\end{aligned}
$$

Express in ordinary English the following propositions:
$-A \rightarrow(B \vee C)$:
If n is a nonnegative integer, then n is even or n is odd.
$-(A \wedge \neg B) \rightarrow C$:
If n is a nonnegative integer and n is not even, then n is odd.
2. (a) Let A be a propositional variable and let F be a false proposition. Construct the truth table for $(\neg A \rightarrow F) \rightarrow A$.

$$
\begin{array}{cc|ccc}
A & F & \neg A & \neg A \rightarrow F & (\neg A \rightarrow F) \rightarrow A \\
\hline T & F & F & T & T \\
F & F & T & F & T
\end{array}
$$

In class, we gave a proof of the statement "There are infinitely many primes". Answer the following questions concerning the proof. You must be concise and precise.
[Here is a reminder of the proof:
Suppose there exist only finitely many primes, say $p_{1}, p_{2}, \ldots, p_{n}$. Consider the number

$$
k=p_{1} p_{2} \cdots p_{n}+1 .
$$

Since it is larger than all of p_{1}, \ldots, p_{n}, it cannot be a prime. By the Decomposition into Primes, it is a product of primes, say $k=p_{i_{1}} \cdots p_{i_{\ell}}$. Now we have

$$
p_{1} p_{2} \cdots p_{n}+1=p_{i_{1}} \cdots p_{i_{\ell}} .
$$

This gives $1=p_{i_{1}} \cdots p_{i_{\ell}}-p_{1} p_{2} \cdots p_{n}$. But the right hand side is divisible by $p_{i_{1}}$ (since it is a prime and, therefore, among the $\left.p_{1}, \ldots, p_{n}\right)$. Thus, $p_{i_{1}} \mid 1$, a contradiction.]
(b) We gave a proof by contradiction
(c) We assumed that there were finitely many primes
(d) Under (c) we proved that a prime number divides 1
(e) We concluded that there are infinitely many primes
(f) Which statement should A stand for in Part (a) so that the proof described in Parts (c)-(e) is mirrored by the proposition $(\neg A \rightarrow F) \rightarrow A$?
A : "There are infinitely many primes"
Then the proposition $(\neg A \rightarrow F) \rightarrow A$ gives the statement:
If the existence of finitely many primes implies a false statement, then there are infinitely many primes.

