QUIZ 3 - CSCI 341 YOUR NAME:

Read each problem **very carefully** before starting to solve it. Each problem is worth 5 points. It is necessary to show **all** your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

- 1. Fill in the missing information in formal notation (not in verbal descriptions):
 - (a) $\{a, b, c\} \times \{A, B\} \times \{0, 1\} =$
 - (b) tail($\langle \langle a, \langle \rangle \rangle, \langle a \rangle, \langle a, b \rangle \rangle$) =
 - (c) $\operatorname{cons}(\langle a \rangle, \operatorname{tail}(\operatorname{tail}(\langle \langle a, \langle \rangle \rangle, \langle a \rangle, \langle a, b \rangle))) =$
 - (d)

$$L = \{aab, aabb, aabbb, \ldots\} \cup \{abab, ababb, ababbb, \ldots\} \cup \{abbab, abbabbb, abbabbb, \ldots\} \cup \cdots$$
$$= \{ \qquad : \qquad \}$$

- 2. (a) Let L be the language $L=\{\Lambda,ab\}$ over the alphabet $A=\{a,b\}.$ (i) $L^3=$
 - (ii) $L^+ =$
 - (b) Decide on whether the following statements are true or false and provide a proof (making sure to following a template closely):
 - (i) $L(M \cap N) \subseteq LM \cap LN$, for all languages L, M, N over some alphabet A.

This statement is _____

Proof:

(ii) $LM \cap LN \subseteq L(M \cap N)$, for all languages L, M, N over some alphabet A.

This statement is _____

Proof:

3. (a) Let $f: A \to B$ be a function. Define the following sets using formal notation: (i) If $S \subseteq A$, then

 $f(S) = \{ \qquad : \qquad \}$

- (ii) If $T \subseteq B$, then $f^{-1}(T) = \{ \qquad : \qquad \}$
- (b) In this part f denotes the function ceiling = []. Find the following:
 - (i) The type of f is
 - (ii) f([2.3,7]) =
 - (iii) $f^{-1}(\{-5, -4\}) =$
- (c) Consider the following statement:

For every function $f: A \to B$ and all subsets $E, F \subseteq A$,

$$f(E \cap F) = f(E) \cap f(F).$$

The statement above is _____

Proof: