Read each problem very carefully before starting to solve it. Each problem is worth 5 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Fill in the missing information in formal notation (not in verbal descriptions):
(a) $\{a, b, c\} \times\{A, B\} \times\{0,1\}=$
(b) $\operatorname{tail}(\langle\langle a,\langle \rangle\rangle,\langle a\rangle,\langle a, b\rangle\rangle)=$
(c) $\operatorname{cons}(\langle a\rangle, \operatorname{tail}(\operatorname{tail}(\langle\langle a,\langle \rangle\rangle,\langle a\rangle,\langle a, b\rangle\rangle)))=$
(d)

$$
\begin{aligned}
L= & \{a a b, a a b b, a a b b b, \ldots\} \cup\{a b a b, a b a b b, a b a b b b, \ldots\} \\
& \cup\{a b b a b, a b b a b b, a b b a b b b, \ldots\} \cup \cdots \\
= & \{\quad:
\end{aligned}
$$

2. (a) Let L be the language $L=\{\Lambda, a b\}$ over the alphabet $A=\{a, b\}$.
(i) $L^{3}=$
(ii) $L^{+}=$
(b) Decide on whether the following statements are true or false and provide a proof (making sure to following a template closely):
(i) $L(M \cap N) \subseteq L M \cap L N$, for all languages L, M, N over some alphabet A.

This statement is \qquad
Proof:
(ii) $L M \cap L N \subseteq L(M \cap N)$, for all languages L, M, N over some alphabet A.

This statement is \qquad
Proof:
3. (a) Let $f: A \rightarrow B$ be a function. Define the following sets using formal notation:
(i) If $S \subseteq A$, then

$$
f(S)=\{\quad: \quad\}
$$

(ii) If $T \subseteq B$, then

$$
f^{-1}(T)=\{\quad: \quad\}
$$

(b) In this part f denotes the function ceiling $=\lceil \rceil$. Find the following:
(i) The type of f is
(ii) $f([2.3,7])=$
(iii) $f^{-1}(\{-5,-4\})=$
(c) Consider the following statement:

For every function $f: A \rightarrow B$ and all subsets $E, F \subseteq A$,

$$
f(E \cap F)=f(E) \cap f(F)
$$

The statement above is \qquad
Proof:

