Read each problem **very carefully** before starting to solve it. Each problem is worth 5 points. It is necessary to show **all** your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Fill in the missing information in formal notation (not in verbal descriptions):

(a)
$$\{a,b,c\} \times \{A,B\} \times \{0,1\} = \{(a,A,0), (a,A,1), (a,B,0), (a,B,1), (b,A,0), (b,A,1), (b,B,0), (b,B,1), (c,A,0), (c,A,1), (c,B,0), (c,B,1)\};$$

(b) $tail(\langle \langle a, \langle \rangle \rangle, \langle a \rangle, \langle a, b \rangle \rangle) = \langle \langle a \rangle, \langle a, b \rangle \rangle;$

(c)

$$\begin{array}{lll} \operatorname{cons}(\langle a \rangle, \operatorname{tail}(\operatorname{tail}(\langle \langle a, \langle \rangle \rangle, \langle a \rangle, \langle a, b \rangle \rangle))) & = & \operatorname{cons}(\langle a \rangle, \operatorname{tail}(\langle \langle a \rangle, \langle a, b \rangle \rangle)) \\ & = & \operatorname{cons}(\langle a \rangle, \langle \langle a, b \rangle \rangle) \\ & = & \langle \langle a \rangle, \langle a, b \rangle \rangle. \end{array}$$

(d)
$$L = \{aab, aabb, aabbb, \ldots\} \cup \{abab, ababb, ababbb, \ldots\} \cup \{abbab, abbabb, abbabbb, \ldots\} \cup \cdots$$
$$= \{ab^m ab^n : m > 0, n > 0\}$$

- 2. (a) Let L be the language $L = \{\Lambda, ab\}$ over the alphabet $A = \{a, b\}$.
 - (i) $L^3 = \{\Lambda, ab, abab, ababab\}$
 - (ii) $L^+ = \{(ab)^n : n > 0\}$
 - (b) Decide on whether the following statements are true or false and provide a proof (making sure to following a template closely):
 - (i) $L(M \cap N) \subseteq LM \cap LN$, for all languages L, M, N over some alphabet A.

This statement is True

Proof:

Let $x \in L(M \cap N)$.

Then $x = \ell y$, where $\ell \in L$, $y \in M \cap N$.

So $x = \ell y$, where $\ell \in L$ and $y \in M$ and $y \in N$.

Thus, $x \in LM$ and $x \in LN$.

So $x \in LM \cap LN$.

(ii) $LM \cap LN \subseteq L(M \cap N)$, for all languages L, M, N over some alphabet A.

This statement is False

Proof: Consider the languages L, M, N over $A = \{a\}$, defined as follows:

$$L = \{a, aa\}, \qquad M = \{a\}, \qquad N = \{\Lambda\}.$$

Then, we can easily check that

$$aa \in LM \cap LN;$$

 $aa \notin L(M \cap N) = \emptyset.$

- 3. (a) Let $f: A \to B$ be a function. Define the following sets using formal notation:
 - (i) If $S \subseteq A$, then

$$f(S) = \{f(s) : s \in S\}$$

(ii) If $T \subseteq B$, then

$$f^{-1}(T) = \{ a \in A : f(a) \in T \}$$

- (b) In this part f denotes the function ceiling = []. Find the following:
 - (i) The type of f is $\mathbb{R} \to \mathbb{Z}$
 - (ii) $f([2.3, 6.7]) = \{3, 4, 5, 6, 7\}$
 - (iii) $f^{-1}(\{-5, -4\}) = (-6, -4]$
- (c) Consider the following statement:

For every function $f: A \to B$ and all subsets $E, F \subseteq A$,

$$f(E \cap F) = f(E) \cap f(F).$$

The statement above is $\underline{\text{False}}$

Proof: Consider the function $f:\{a,b\}\to\{0,1\}$, defined by f(a)=f(b)=0. Let $E=\{a\}$ and $F=\{b\}$.

Then we can easily check that:

$$0 \in f(E) \cap f(F) = f(\{a\}) \cap f(\{b\});$$

$$0 \notin f(E \cap F) = f(\emptyset).$$