Read each problem very carefully before starting to solve it. Each problem is worth 5 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Fill in the missing information in formal notation (not in verbal descriptions):
(a)

$$
\begin{aligned}
\{a, b, c\} \times\{A, B\} \times\{0,1\}= & \{(a, A, 0),(a, A, 1),(a, B, 0),(a, B, 1), \\
& (b, A, 0),(b, A, 1),(b, B, 0),(b, B, 1), \\
& (c, A, 0),(c, A, 1),(c, B, 0),(c, B, 1)\}
\end{aligned}
$$

(b) $\operatorname{tail}(\langle\langle a,\langle \rangle\rangle,\langle a\rangle,\langle a, b\rangle\rangle)=\langle\langle a\rangle,\langle a, b\rangle\rangle ;$
(c)

$$
\begin{aligned}
\operatorname{cons}(\langle a\rangle, \operatorname{tail}(\operatorname{tail}(\langle\langle a,\langle \rangle\rangle,\langle a\rangle,\langle a, b\rangle\rangle))) & =\operatorname{cons}(\langle a\rangle, \operatorname{tail}(\langle\langle a\rangle,\langle a, b\rangle\rangle)) \\
& =\operatorname{cons}(\langle a\rangle,\langle\langle a, b\rangle\rangle) \\
& =\langle\langle a\rangle,\langle a, b\rangle\rangle .
\end{aligned}
$$

(d)

$$
\begin{aligned}
L= & \{a a b, a a b b, a a b b b, \ldots\} \cup\{a b a b, a b a b b, a b a b b b, \ldots\} \\
& \cup\{a b b a b, a b b a b b, a b b a b b b, \ldots\} \cup \cdots \\
= & \left\{a b^{m} a b^{n}: m \geq 0, n>0\right\}
\end{aligned}
$$

2. (a) Let L be the language $L=\{\Lambda, a b\}$ over the alphabet $A=\{a, b\}$.
(i) $L^{3}=\{\Lambda, a b, a b a b, a b a b a b\}$
(ii) $L^{+}=\left\{(a b)^{n}: n \geq 0\right\}$
(b) Decide on whether the following statements are true or false and provide a proof (making sure to following a template closely):
(i) $L(M \cap N) \subseteq L M \cap L N$, for all languages L, M, N over some alphabet A.

This statement is True
Proof:
Let $x \in L(M \cap N)$.
Then $x=\ell y$, where $\ell \in L, y \in M \cap N$.
So $x=\ell y$, where $\ell \in L$ and $y \in M$ and $y \in N$.
Thus, $x \in L M$ and $x \in L N$.
So $x \in L M \cap L N$.
(ii) $L M \cap L N \subseteq L(M \cap N)$, for all languages L, M, N over some alphabet A.

This statement is False
Proof: Consider the languages L, M, N over $A=\{a\}$, defined as follows:

$$
L=\{a, a a\}, \quad M=\{a\}, \quad N=\{\Lambda\} .
$$

Then, we can easily check that

$$
\begin{aligned}
& a a \in L M \cap L N \\
& a a \notin L(M \cap N)=\emptyset .
\end{aligned}
$$

3. (a) Let $f: A \rightarrow B$ be a function. Define the following sets using formal notation:
(i) If $S \subseteq A$, then

$$
f(S)=\{f(s): s \in S\}
$$

(ii) If $T \subseteq B$, then

$$
f^{-1}(T)=\{a \in A: f(a) \in T\}
$$

(b) In this part f denotes the function ceiling $=\lceil \rceil$. Find the following:
(i) The type of f is $\mathbb{R} \rightarrow \mathbb{Z}$
(ii) $f([2.3,6.7])=\{3,4,5,6,7\}$
(iii) $f^{-1}(\{-5,-4\})=(-6,-4]$
(c) Consider the following statement:

For every function $f: A \rightarrow B$ and all subsets $E, F \subseteq A$,

$$
f(E \cap F)=f(E) \cap f(F)
$$

The statement above is False
Proof: Consider the function $f:\{a, b\} \rightarrow\{0,1\}$, defined by $f(a)=f(b)=0$.
Let $E=\{a\}$ and $F=\{b\}$.
Then we can easily check that:

$$
\begin{aligned}
& 0 \in f(E) \cap f(F)=f(\{a\}) \cap f(\{b\}) ; \\
& 0 \notin f(E \cap F)=f(\emptyset) .
\end{aligned}
$$

