Read each problem very carefully before starting to solve it. Each problem is worth 5 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Give the formal inductive definition of the set \mathcal{R} of regular expressions:

Basis: $\emptyset, \Lambda, a \in \mathcal{R}$, where $a \in A$;

Induction: If $R, S \in \mathcal{R}$, then
(a) $(R) \in \mathcal{R}$;
(b) $R+S \in \mathcal{R}$;
(c) $R \cdot S \in \mathcal{R}$; and
(d) $R^{*} \in \mathcal{R}$.
2. Apply the operator L that associates to a given regular expression the corresponding regular language recursively (showing all steps) to discover the regular language $L\left(b\left(a^{*} b c^{*}+a c\right)\right.$):

$$
\begin{aligned}
L\left(b\left(a^{*} b c^{*}+a c\right)\right) & =L(b) L\left(a^{*} b c^{*}+a c\right) \\
& =L(b)\left(L\left(a^{*} b c^{*}\right) \cup L(a c)\right) \\
& =L(b)\left(L(a)^{*} L(b) L(c)^{*} \cup L(a) L(c)\right) \\
& =\{b\}\left(\{a\}^{*}\{b\}\{c\}^{*} \cup\{a\}\{c\}\right) \\
& =\{b\}\left(\left\{a^{n}: n \geq 0\right\}\{b\}\left\{c^{m}: m \geq 0\right\} \cup\{a c\}\right) \\
& =\{b\}\left(\left\{a^{n} b c^{m}: n, m \geq 0\right\} \cup\{a c\}\right) \\
& =\{b a c\} \cup\left\{b a^{n} b c^{m}: n, m \geq 0\right\} .
\end{aligned}
$$

3. Write a regular expression for the language L over the alphabet $A=\{a, b, c\}$ consisting of all strings that contain the substring $a b a$ and end in c.

The required expression is

$$
(a+b+c)^{*} a b a(a+b+c)^{*} c .
$$

4. The equation $(R R)^{*}=R^{*} R^{*}$ between regular expressions is false

Proof:

For alphabet $A=\{a\}$ and $R=a$, the given equation becomes

$$
(a a)^{*}=a^{*} a^{*}
$$

Since $a \in L\left(a^{*} a^{*}\right)$, but $a \notin L\left((a a)^{*}\right)$, we have that

$$
L\left((a a)^{*}\right) \neq L\left(a^{*} a^{*}\right) .
$$

Therefore, we conclude that

$$
(a a)^{*} \neq a^{*} a^{*}
$$

