QUIZ 7 SOLUTIONS - CSCI 341

Read each problem **very carefully** before starting to solve it. Each problem is worth 5 points. It is necessary to show **all** your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Give the formal inductive definition of the set \mathcal{R} of **regular expressions**:

Basis: $\emptyset, \Lambda, a \in \mathcal{R}$, where $a \in A$;

Induction: If $R, S \in \mathcal{R}$, then

- (a) $(R) \in \mathcal{R};$
- (b) $R + S \in \mathcal{R};$
- (c) $R \cdot S \in \mathcal{R}$; and
- (d) $R^* \in \mathcal{R}$.
- 2. Apply the operator L that associates to a given regular expression the corresponding regular language recursively (showing all steps) to discover the regular language $L(b(a^*bc^* + ac))$:

3. Write a regular expression for the language L over the alphabet $A = \{a, b, c\}$ consisting of all strings that contain the substring *aba* and end in *c*.

The required expression is

$$(a+b+c)^*aba(a+b+c)^*c.$$

4. The equation $(RR)^* = R^*R^*$ between regular expressions is <u>false</u> **Proof:**

For alphabet $A = \{a\}$ and R = a, the given equation becomes

$$(aa)^* = a^*a^*.$$

Since $a \in L(a^*a^*)$, but $a \notin L((aa)^*)$, we have that

$$L((aa)^*) \neq L(a^*a^*).$$

Therefore, we conclude that

$$(aa)^* \neq a^*a^*.$$