Read each problem **very carefully** before starting to solve it. Each problem is worth 5 points. It is necessary to show **all** your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Use the top-down algorithm to construct an NFA for the regular language described by the regular expression $a^* + ab^*$ (show one step at a time; so you must execute 4 steps).

2. In the process of obtaining a regular expression for the regular language accepted by an NFA, a colleague of yours has obtained the following diagram:

An emergency has interrupted his work and you are called to continue the process. Execute the remaining two steps by eliminating first State 1 and then State 2 to get the final regular expression (you do not have to simplify after each step).

We eliminate state 1:

$$\text{new}(s,2) = c(ab)^* a
 \text{new}(2,2) = a + b(ab)^* a$$

We eliminate state 2:

$$new(s, f) = c(ab)^*a[a + b(ab)^*a]^*bc^*$$

3. Use the algorithm described in class to get a DFA accepting the same regular language that is accepted by the NFA shown in the following picture. Please carry out one step at a time.

Start state: $\lambda(0) = \{0, 1, 2\}$

Transitions out of state $\lambda(0)$:

$$\begin{array}{lcl} \delta(\{0,1,2\},a) & = & \lambda(\{1,2\}) = \{1,2\}; \\ \delta(\{0,1,2\},b) & = & \lambda(\{2\}) = \{2\}. \end{array}$$

Transitions out of state $\{1,2\}$:

$$\begin{array}{lcl} \delta(\{1,2\},a) & = & \lambda(\{2\}) = \{2\}; \\ \delta(\{1,2\},b) & = & \lambda(\{2\}) = \{2\}. \end{array}$$

Transitions out of state $\{2\}$:

$$\begin{array}{lcl} \delta(\{2\},a) & = & \lambda(\{2\}) = \{2\}; \\ \delta(\{2\},b) & = & \lambda(\emptyset) = \emptyset. \end{array}$$

Transitions out of state \emptyset : $\delta(\emptyset, a) = \delta(\emptyset, b) = \emptyset$.

So we get the transition table shown below on the left, with $\{0,1,2\}$ the start state and all states except \emptyset being final states.

After renaming the states to simplify, we get the transition table shown on the right.

State	a	b		State	a	b
$\{0, 1, 2\}$	$\{1, 2\}$	{2}	•	0	1	2
$\{1, 2\}$	$\{2\}$	$\{2\}$		1	2	2
{2}	{2}	Ø		2	2	3
Ø	Ø	Ø		3	3	3

Finally, we give the diagram of the DFA just constructed:

