Read each problem very carefully before starting to solve it. Each problem is worth 5 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Use the top-down algorithm to construct an NFA for the regular language described by the regular expression $a^{*}+a b^{*}$ (show one step at a time; so you must execute 4 steps).

2. In the process of obtaining a regular expression for the regular language accepted by an NFA, a colleague of yours has obtained the following diagram:

An emergency has interrupted his work and you are called to continue the process. Execute the remaining two steps by eliminating first State 1 and then State 2 to get the final regular expression (you do not have to simplify after each step).
We eliminate state 1 :

$$
\begin{aligned}
\operatorname{new}(s, 2) & =c(a b)^{*} a \\
\operatorname{new}(2,2) & =a+b(a b)^{*} a
\end{aligned}
$$

We eliminate state 2:

$$
\operatorname{new}(s, f)=c(a b)^{*} a\left[a+b(a b)^{*} a\right]^{*} b c^{*}
$$

3. Use the algorithm described in class to get a DFA accepting the same regular language that is accepted by the NFA shown in the following picture. Please carry out one step at a time.

Start state: $\lambda(0)=\{0,1,2\}$
Transitions out of state $\lambda(0)$:

$$
\begin{aligned}
\delta(\{0,1,2\}, a) & =\lambda(\{1,2\})=\{1,2\} ; \\
\delta(\{0,1,2\}, b) & =\lambda(\{2\})=\{2\} .
\end{aligned}
$$

Transitions out of state $\{1,2\}$:

$$
\begin{aligned}
\delta(\{1,2\}, a) & =\lambda(\{2\})=\{2\} ; \\
\delta(\{1,2\}, b) & =\lambda(\{2\})=\{2\} .
\end{aligned}
$$

Transitions out of state $\{2\}$:

$$
\begin{aligned}
\delta(\{2\}, a) & =\lambda(\{2\})=\{2\} ; \\
\delta(\{2\}, b) & =\lambda(\emptyset)=\emptyset .
\end{aligned}
$$

Transitions out of state $\emptyset: \delta(\emptyset, a)=\delta(\emptyset, b)=\emptyset$.
So we get the transition table shown below on the left, with $\{0,1,2\}$ the start state and all states except \emptyset being final states.
After renaming the states to simplify, we get the transition table shown on the right.

State	a	b		State	a
b					
$\{0,1,2\}$	$\{1,2\}$	$\{2\}$		0	1

Finally, we give the diagram of the DFA just constructed:

