Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Suppose that a thermo-detecting robot, equipped with an ultra sensitive thermometer, is moving in a three dimensional space. At a point (x, y, z) in the space, the "temperature" is given by $T(x, y, z)=x y e^{z}$. If at time t, the position of the robot is given by $\mathbf{r}(t)=\left\langle e^{t}, t, t^{2}\right\rangle$, how fast is the temperature detected by the robot changing at $t=1$ time unit into its motion?

2. Find the directional derivative of $f(x, y, z)=x \ln (y+z)$ at $P(2, e, e)$ in the direction of the vector $\mathbf{v}=2 \mathbf{i}-\mathbf{j}+\mathbf{k}$.
3. Find all local extrema and saddle points of $f(x, y)=x^{3}+y^{3}-12 x y$.

4. Find the volume of the solid enclosed by the paraboloid $z=x^{2}+3 y^{2}$ and the planes $x=$ $0, y=1, y=x$ and $z=0$.
5. Use polar coordinates to find the volume of the solid inside both the cylinder $x^{2}+y^{2}=4$ and the ellipsoid $4 x^{2}+4 y^{2}+z^{2}=64$.

