Read each problem **very carefully** and try to understand it well before starting to solve it. It is necessary to show **all** your work. Correct answers without explanations are worth 0 points. Write your own solutions and be neat!! **Take pride in your work!! Do not hand in scratchy doodles.**

- 1. Is $2 \in \{1, 2, 3\}$? Why?
- 2. Is $\{1,2\} \in \{\{1,2,3\},\{1,3\},1,2\}$? Why?
- 3. Give precise descriptions in plain English of the following sets:
 - (a) $\{x \in \mathbb{N} : x \text{ is divisible by } 2 \text{ and } x \text{ is divisible by } 3\}$
 - (b) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$
 - (c) $\{(x, y) \in \mathbb{R}^2 : y = 2x \text{ and } y = 3x\}$
- 4. Show formally the following statements:
 - (a) $\{k \in \mathbb{Z} : k = 6m \text{ for some } m \in \mathbb{Z}\} \subseteq \{k \in \mathbb{Z} : k = 2n \text{ for some } n \in \mathbb{Z}\};\$
 - (b) If $A \subsetneqq B$ and $B \subseteq C$, then $A \subsetneqq C$.
- 5. Is (each of) the following statement true for all sets A, B and C? If it is, give a proof. If it is not, provide a counterexample.
 - (a) If $A \neq B$ and $B \neq C$, then $A \neq C$;
 - (b) If $A \in B$ and $B \not\subseteq C$, then $A \notin C$;
 - (c) If $A \subsetneqq B$ and $B \subseteq C$, then $C \not\subseteq A$;
- 6. Show that, for a set A in a universe U, we have (A')' = A.
- 7. Show that, for any sets A, B in a universe U, we have $(A \cup B)' = A' \cap B'$.
- 8. Either prove or give a counterexample for the following statement: For all sets A, B, C in a universe $U, (A \setminus B) \setminus C = A \setminus (B \cup C)$.
- 9. Consider the following three syllogisms:

(a)	All S is M	(b)	Some M is not P	(c)	All M is P
	No M is P		No M is S		Some S is M
	\therefore Some S is P		\therefore No S is P		\therefore Some S is not P

For each of (a),(b) and (c) provide its mood, its figure and explain whether it is a valid syllogism under the modern convention regarding the empty class.

10. Consider the following arguments

ARGUMENT 1	ARGUMENT 2
$(A \cup C')' = 0$	$(A' \cup C' \cup D)' = 0$
(A'C)'(BC)' = 0	AD = 0
$\therefore (BC')' = 0$	BC' = 0
	$\therefore AB = 0$

- (a) Use a Venn diagram to determine if each argument is correct.
- (b) If the argument is correct, then use both Boole's equational reasoning and Carroll's tree method to prove its correctness.