HOMEWORK 6 - MATH 300 YOUR NAME:

Read each problem **very carefully** and try to understand it well before starting to solve it. It is necessary to show **all** your work. Correct answers without explanations are worth 0 points. Write your own solutions and be neat!! **Take pride in your work!! Do not hand in scratchy doodles.**

1. Consider the first-order language $\mathcal{L} = \{f, r\}$, where f is a ternary function symbol and r a binary relation symbol. Consider also the \mathcal{L} -structure $\mathbf{S} = (S, I)$, where $S = \{0, 1\}$ and I consists of the following interpretations of the function symbol f and the relation symbol r:

			$f^{\mathbf{S}}$			
1	1	1	0			
1	1	0	0			
1	0	1	1	$r^{\mathbf{S}}$	0	1
1	0	0	1	0	0	1
0	1	1	0	1	0	0
0	1	0	0			
0	0	1	0			
0	0	0	1			

Determine the truth of the following first-order sentences in \mathbf{S} :

(a)
$$\forall x(rxfxxx)$$

- (b) $\forall x \exists y (rfxyxfxxx)$
- 2. Consider the first-order language $\mathcal{L} = \{f, r\}$, where f is a ternary function symbol and r a binary relation symbol. Consider also the \mathcal{L} -structure $\mathbf{S} = (S, I)$, where $S = \{0, 1, 2\}$ and I consists of the following interpretations of the function symbol f and the relation symbol r:

$$f^{\mathbf{S}}(a,b,c) = (a-b+c) \mod 3 \qquad \qquad \frac{r^{\mathbf{S}} \ 0 \ 1 \ 2}{0 \ 1 \ 0 \ 0} \\ 1 \ 1 \ 1 \ 1 \ 1 \\ 2 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0$$

Determine the truth of the following first-order sentences in S:

- (a) $\forall x \exists y ((rfxyxy) \rightarrow (ryfxyx))$
- (b) $\forall x \exists y \forall z (rxfzyx)$
- 3. Consider the language $\mathcal{L} = \{+, \cdot, <\}$, where $+, \cdot$ are binary function symbols and < is a binary relation symbol. Let $x \leq y$ be an abbreviation for $(x < y) \lor (x \approx y)$. Use the skeleton method to determine whether each of the following \mathcal{L} -sentences has a one-element model. If yes, then exhibit that one-element model.

(a)
$$\forall x (\exists y (x \cdot y < x) \rightarrow \exists z ((y \cdot z < x) \land \neg (y \cdot x < z))) \rightarrow \exists x \forall y (x \cdot y < y)$$

(b)
$$\forall x (\exists y (x \cdot y \leq x) \rightarrow \neg \exists y \forall z ((y + z < x \cdot y) \land \neg (y \cdot x \leq z))) \rightarrow \exists x \forall y (x + y < x \cdot y)$$

4. To show that two \mathcal{L} -sentences F and G are equivalent, we must either use some of our fundamental equivalences from first-order logic to transform one to the other, or we have to prove that they are true in exactly the same structures, i.e., that for every structure $\mathbf{S}, \mathbf{S} \models F$ iff $\mathbf{S} \models G$. On the other hand, to show that they are not equivalent, it suffices to find a single structure \mathbf{S} in which one of the two sentences is true and the other is false.

Determine if the following pairs of \mathcal{L} -sentences are equivalent, where $\mathcal{L} = \{f\}$, with f a unary function symbol:

- (a) $\forall x((ffx \approx x) \land (fffx \approx x)) \text{ and } \forall x(fx \approx x);$
- (b) $\forall x \forall y ((fx \approx fy) \rightarrow (x \approx y))$ and $\forall y \exists x (fx \approx y)$.
- 5. To show that two \mathcal{L} -formulas F(x) and G(x), with a free variable x are equivalent, we must either use some of our fundamental equivalences from first-order logic to transform one to the other, or we have to prove that they define exactly the same unary relations in all \mathcal{L} structures, i.e., that for every structure **S** and every $a \in S$, $F^{\mathbf{S}}(a)$ holds iff $G^{\mathbf{S}}(a)$ holds. On the other hand, to show that they are not equivalent, it suffices to find a single structure **S** and a single element $a \in S$, such that one of $F^{\mathbf{S}}(a)$, $G^{\mathbf{S}}(a)$ is true and the other is false.

Determine if the following pairs of formulas are equivalent:

- (a) $\forall y(rxy)$ and $\exists y(rxy)$, where $\mathcal{L} = \{r\}$, r a binary relation symbol;
- (b) $\exists y(r_1fy \wedge r_2y \wedge (x \approx fy)) \text{ and } \exists y \exists z(r_1y \wedge r_2z \wedge (x \approx fy) \wedge (x \approx fz)), \text{ where } \mathcal{L} = \{f, r_1, r_2\}, \text{ with } f \text{ a unary function symbol and } r_1, r_2 \text{ unary relation symbols.}$
- 6. Put the following formulas in the language of graphs into prenex normal form:
 - (a) $(\forall y(\neg(y \approx z) \lor \forall y(y \approx z))) \lor (ryz)$
 - (b) $(z \approx x) \lor ((\forall x (\neg \forall z (rxz))) \to (y \approx z))$
 - (c) $(x \approx y) \rightarrow \exists y(((y \approx z) \rightarrow (\exists z(y \approx z))) \land (y \approx z))$
- 7. Find a counterexample for the following arguments:
 - (a) (Here $\mathcal{L} = \{r_1, r_2, r_3\}$, with r_1, r_2, r_3 unary relation symbols.)

$$\forall x(r_1x \to (r_2x \to r_3x)) \\ \therefore \forall x((r_1x \to r_2x) \to r_3x)$$

(b) (Here $\mathcal{L} = \{r\}$, with r a binary relation symbol.)

$$\begin{aligned} \forall x \exists y (rxy) \\ \forall y \exists x (rxy) \\ \therefore \quad \forall x \forall y (\neg (x \approx y) \rightarrow (rxy)) \end{aligned}$$

- 8. Skolemize the following sentences:
 - (a) $\forall x \exists y (x < y)$
 - (b) $\exists x \forall y (x < y)$
 - (c) $\forall x \forall y ((rxy) \rightarrow \exists z ((rxz) \land (rzy)))$