Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. A store can sell 12 tablets for $\$ 200$ each. The manager estimates that for each $\$ 10$ price reduction she can sell 2 more tablets per day. Each tablet costs the store $\$ 80$. Let x be the number of $\$ 10$ price reductions.
(a) Write equations for the price and the quantity of tablets sold:

$$
\begin{aligned}
& p(x)= \\
& q(x)=
\end{aligned}
$$

(b) Write equation for the cost, the revenue and the profit functions:

$$
\begin{aligned}
& C(x)= \\
& R(x)= \\
& P(x)=
\end{aligned}
$$

(c) What price should the manager set to maximize the store's profit?
2. Use implicit differentiation to find $\frac{d y}{d x}$ if

$$
2 x y^{2}-3 x^{2} y=y^{2}-2 .
$$

3. A soldier is standing 12 m away from a helicopter on a vertical take off whose ascending speed is $1.4 \mathrm{~m} / \mathrm{sec}$. Find how fast the distance between the soldier and the helicopter is changing when the helicopter is at a height of 5 m from the ground.
(Hint: Recall the Pythagorean Theorem from Geometry.)

4. Solve the following equations:
(a)

$$
\frac{2^{\left(x^{2}\right)}}{16}=32^{x-2}
$$

(b)
$\log x+\log (x-10)=3 \log 2+\log 3$.
5. The population $P(t)$ of a certain species in an ecosystem t years after beginning its tracking is given by

$$
P(t)=100\left(27-7 e^{-0.2 t}\right)
$$

(a) How many individuals were in the population initially?
(b) When will the population reach the level of 2500 individuals?

