\qquad
Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Compute the following derivatives:
(a) $\left[x^{2} e^{3 x}-(3 x+\ln x)^{7}\right]^{\prime}=$
(b) $\left[\frac{3 e^{5 x}}{1+e^{-2 x}}\right]^{\prime}=$
2. Compute the integrals:
(a) $\int \frac{2 x^{5}+x^{3} e^{9 x}-x^{2}}{x^{3}} d x=$
(b) $\int \frac{6 x^{3}+\sqrt{x^{3}}-1}{\sqrt{x^{5}}} d x=$
3. The price of an ice-cream cone at a certain store in the Soo is increasing at the rate of $18 e^{0.1 t}$ cents per year, where t is the number of years since the store's opening in 2010.
(a) If in 2010, when the store opened, the price was set at $\$ 4.00$, what would the price be t years after 2010?
(b) Assuming the store stays open in the foreseeable future, when is the price of the ice-cream cone predicted to reach $\$ 7.00$?
4. A model giving the sales of apple computers immediately following the turn of the millennium is

$$
S(x)=2 x^{2}-9 x+39 \text { hundeds thousands. }
$$

where x is the number of years since 2000 .
What were the average sales from 2000 to 2006 ?
5. Find the area of the region enclosed by the graphs of $f(x)=x^{3}$ and $g(x)=4 x$.

