Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Find the decomposition $\mathbf{a}=\mathbf{a}_{\|}+\mathbf{a}_{\perp}$, for $\mathbf{a}=\langle 1,-1,2\rangle$, with respect to $\mathbf{b}=\langle 1,1,1\rangle$.
2. Find the intersection of the plane $x-y+5 z=10$ with the line $\mathbf{r}(t)=\langle 1,0,1\rangle+t\langle-2,1,1\rangle$.
3. Find an equation for the plane that contains the lines $\mathbf{r}_{1}(t)=\langle 2,1,0\rangle+\langle t, 2 t, 3 t\rangle$ and $\mathbf{r}_{2}(t)=$ $\langle 5,2,8\rangle+\langle 3 t, t, 8 t\rangle$.
4. (a) Use the product rule to compute $\frac{d}{d t}\left(\mathbf{r}_{1}(t) \times \mathbf{r}_{2}(t)\right)$, where $\mathbf{r}_{1}(t)=\left\langle t^{2}, t^{3}, t\right\rangle$ and $\mathbf{r}_{2}(t)=$ $\left\langle e^{3 t}, e^{2 t}, e^{t}\right\rangle$.
(b) Evaluate the integral

$$
\int_{0}^{1} \mathbf{r}(t) d t, \text { where } \mathbf{r}(t)=\left\langle t e^{-t}, t \ln \left(t^{2}+1\right)\right\rangle
$$

5. Find an arc length parametrization of $\mathbf{r}(t)=\left\langle e^{t} \sin t, e^{t} \cos t, e^{t}\right\rangle$.
