Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Consider the function $f(x, y)=\sqrt{4-x^{2}-y^{2}} \ln (y-x)$.
(a) Find its domain

$$
\mathcal{D}=\left\{(x, y) \in \mathbb{R}^{2}:\right.
$$

(b) Carefully sketch the domain, labeling points and showing relevant details.
2. Show that $\lim _{(x, y) \rightarrow(-2,1)} \frac{y^{2}-1}{x^{3}-y+9}$ does not exist. (Please describe clearly the curves chosen and give their equations!)
3. Compute the following partial derivatives:
(a) $f_{x y z}$ if $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$.
(b) $g_{x y}(-3,2)$ if $g(x, y)=x e^{-x y}$.
4. (a) Find an equation for the tangent plane to $f(x, y)=\ln \left(4 x^{2}-y^{2}\right)$ at the point $(1,1)$.
(b) Assume

$$
\begin{array}{ll}
f(1,0,0)=3, & f_{x}(1,0,0)=-2 \\
f_{y}(1,0,0)=4, & f_{z}(1,0,0)=2
\end{array}
$$

Estimate the value of $f(1.02,0.01,-0.03)$.
5. (a) Compute $\frac{d}{d t} f(\boldsymbol{c}(t))$, if $f(x, y)=\ln x+\ln y$ and $\boldsymbol{c}(t)=\left\langle\cos t, t^{2}\right\rangle$, at the point $t=\frac{\pi}{4}$.
(b) Calculate the directional derivative of $f(x, y)=\sin (x-y)$ in the direction of $\boldsymbol{v}=\langle 1,1\rangle$ at the point $P=\left(\frac{\pi}{2}, \frac{\pi}{6}\right)$.
(c) Find an equation for the tangent plane to the surface $x^{2}+z^{2} e^{y-x}=13$ at the point $P=\left(2,3, \frac{3}{\sqrt{e}}\right)$.

