EXAM 4 - MATH 251 YOUR NAME: \qquad
Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. (a) Evaluate the partial derivative $\frac{\partial h}{\partial q}$ at $(q, r)=(3,2)$, where $h(u, v)=u e^{v}$ and $u=q^{3}$, $v=q r^{2}$.
(b) Use implicit differentiation to evaluate $\frac{\partial z}{\partial y}$ if $e^{x y}+\sin (x z)+y=0$.
2. Find the critical points of $f(x, y)=x^{3}+x^{2} y+2 y^{2}$ and use the second derivative test to tell whether they give rise to local extrema or saddle points.
3. Compute the double integral of $f(x, y)=\sin x$ over the domain \mathcal{D} bounded by $x=0, y=0$ and $y=\cos x$.
4. Calculate the average height above the x-axis of a point in the region \mathcal{D} determined by $0 \leq x \leq 1$ and $0 \leq y \leq x^{2}$.
(Hint: Be careful in choosing the function $f(x, y)$!)
5. Sketch the region of integration and evaluate by changing to polar coordinates the iterated integral $\int_{0}^{3} \int_{0}^{\sqrt{9-y^{2}}} \sqrt{x^{2}+y^{2}} d x d y$.
