Read each problem very carefully before starting to solve it. Each problem is worth 5 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Suppose that the motion of a particle is described by the vector function $\boldsymbol{r}=\left\langle t^{2}, \frac{1}{t}, t\right\rangle$. Find an equation for the normal plane to the motion at $t=2$.
2. Let $\boldsymbol{r}(t)=\langle t, \cos t, \sin t\rangle$. Find the tangential and normal component of the acceleration at time t.
3. (a) Compute the integral

$$
\int t e^{3 t} d t
$$

(b) Suppose that a moving object has acceleration function $\boldsymbol{a}(t)=\left\langle 3 t e^{3 t}+e^{3 t}, 2 t, 6\right\rangle$. If the object at time $t=0$ has velocity $\boldsymbol{v}(0)=\langle 0,0,1\rangle$ and is at position $\boldsymbol{r}(0)=\left\langle-\frac{1}{9}, 1,5\right\rangle$, find the position $\boldsymbol{r}(t)$ of the object at time t.

