Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Consider the function $f(x)=-x^{2}+6 x-5$. Answer the following questions about f.
(a) Find the vertex.
(b) Give the opening direction.
(c) Find the y-intercept.
(d) Find the x-intercepts.
(e) Sketch the graph.
2. Sketch the graph of the function $f(x)= \begin{cases}-2 x+1, & \text { if } x<1 \\ -x^{2}+6 x-5, & \text { if } x \geq 1\end{cases}$
(Hint: Use the graph from Problem 1.)
$f(1)=$
$\lim _{x \rightarrow 1^{-}} f(x)=$
$\lim _{x \rightarrow 1^{+}} f(x)=$
$\lim _{x \rightarrow 1} f(x)=$
3. Find the difference quotient of the function $f(x)=\sqrt{5 x+1}$ at $x=3$.
4. Compute the following limits:
(a) $\lim _{x \rightarrow-7} \frac{x^{2}+4 x-21}{x^{2}+8 x+7}=$
(b) $\lim _{x \rightarrow 2} \frac{\frac{1}{x+5}-\frac{1}{7}}{x-2}=$
5. Consider the piece-wise defined function

$$
f(x)= \begin{cases}\frac{x^{2}-9}{x+3}, & \text { if } x<-3 \\ -2, & \text { if } x=-3 \\ \frac{\sqrt{3-2 x}-3}{x+3}, & \text { if } x>-3\end{cases}
$$

Compute the following:
(a) $\lim _{x \rightarrow-3^{-}} f(x)=$
(b) $f(-3)=$
(c) $\lim _{x \rightarrow-3^{+}} f(x)=$
(d) State the type of continuity that $f(x)$ has at $x=-3$ (if any).

