Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. (a) Let $f(x)=x^{2}-7 x$.
(i) Evaluate $f(3)$.
(ii) Solve $f(x)=-10$.
(b) Consider the function $f(x)$ specified by the following table:

$$
\begin{array}{c|rrrrrr}
x & -3 & -2 & -1 & 0 & 1 & 2 \\
\hline f(x) & 7 & 5 & -4 & 3 & 5 & 9
\end{array}
$$

(i) Find $f(-1)$.
(ii) Solve $f(x)=5$.
(iii) Is f one-to-one? Explain in a short, but precise, sentence why or why not.
2. (a) Let $f(x)=\frac{3 x+1}{4 x+7}$. Find the domain $\operatorname{Dom}(f)$ showing all your steps.
(b) Let $f(x)=\sqrt{3-15 x}$. Find the domain $\operatorname{Dom}(f)$ showing all your steps.
(c) Let $f(x)$ be the function specified by the graph shown below.

(i) Find the domain $\operatorname{Dom}(f)$ and write it in interval notation.
(ii) Find the range $\operatorname{Ran}(f)$ and write it in interval notation.
3. (a) Find the average rate of change of $f(x)=2 x^{2}+5$ over the interval $[1,1+h]$. Show all your work and simplify.
(b) Let $f(x)$ be the function specified by the graph shown below.

(i) Find the intervals where f is increasing.
(ii) Find the local max point(s).
(iii) Find the local min point(s).
(iv) Find the absolute max and absolute min points.
4. (a) Let $f(x)=\frac{1}{x-4}$ and $g(x)=\frac{1}{7-x}$.
(i) Find a formula for $(f \circ g)(x)$. Show all steps and simplify.
(ii) Find the domain $\operatorname{Dom}(f)$.
(iii) Find the domain $\operatorname{Dom}(g)$.
(iv) Find the domain $\operatorname{Dom}(f \circ g)$. Show the two conditions and discover the restriction they impose on x, showing all your steps.
(b) Let $h(x)=\sqrt[3]{x^{2}+1}$. Find functions $f(x)$ and $g(x)$, so that $h(x)=(f \circ g)(x)$.
5. (a) The graph of $y=|x|$ is shown on the left. Show the formula transformations and give the corresponding verbal descriptions in the adjacent parentheses that are needed to get from $y=|x|$ to the graph of $y=f(x)$ shown on the right.

$|x| \longrightarrow$
\qquad
\longrightarrow

(b) Let $f(x)=\frac{5}{x-3}+7$. Find a formula for $f^{-1}(x)$.
(c) Let $f(x)$ be the function specified by the graph shown below. Find the following:

(i) $f(3)=$
(ii) $f^{-1}(0)=$
(iii) $\operatorname{Dom}\left(f^{-1}\right)=$
(iv) $\operatorname{Ran}\left(f^{-1}\right)=$

