Read each problem very carefully before starting to solve it. Each problem is worth around 5 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. [4 points] Laura exercises daily by running a few miles. The following table gives some data relating her distance d (in miles) with the time t in minutes it takes her to cover that distance.

t	10	22	36	50	68
d	1	2	3	4	5

(a) Give the linear regression line (i.e., the line of best fit) for the equation of the distance $d(t)$ as a function of time and the corresponding correlation coefficient r.
(b) Using the regression line, estimate how much time it would take Laura to complete an upcoming 8 -mile race. (Show all steps of your work by hand.)
2. [4 points] Write equations in standard form for the following parabolas.
(a) $f(x)=2 x^{2}-8 x+5$.
(b) $y=g(x)$ whose graph is shown on the left below.

3. [4 points] A small soccer stadium has 12,000 seats. The team owners found that, when the ticket price is set at $\$ 30$ the stadium is half-full whereas if the ticket price is set at $\$ 10$, the stadium fills up.
(a) Find a linear equation giving the attendance y at a soccer game as a function of the price x the owners charge per ticket.
(b) Find how the price x should be set so that the revenue R of the soccer club per game is maximum.

